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Foreword

Together with the oncoming environmental cyber-

infrastructure,1 including novel sensors and sensor 

technologies, the Environmental Observatories (EOs) 

of the National Science Foundation (NSF) share the 

collective ambition of bringing unprecedented streams 

of observations to bear on Environmental Science in 

the decades to come. Mathematical and computational 

models are intrinsically generic entities, cutting 

across specifi c, disciplinary boundaries, in particular 

here, those of the Observatories in the Ocean 

Sciences (ORION), Ecology (NEON), Hydrology and 

Environmental Engineering (WATERS Network). 

What new opportunities for research might these EOs 

bring about for environmental modeling, especially 

where those opportunities benefi t greatly from the 

cross-cutting, collaborative, integrative style of model 

building?

Th is White Paper sets out thirteen Grand Challenges 

of the future for environmental modeling in response 

to that question. Th e same grand challenges are also 

set out in the Synopsis of this Paper, which is available 

as a separate document at www.modeling.uga.edu/

EOModels and which can be read as an extended 

Executive Summary of the present document. Both the 

Synopsis and this White Paper introduce and discuss 

each challenge in the same format: of the context and 

foundations of — hence, the justifi cation of — why 

each should have been identifi ed as a challenge in the 

contemporary research scene; followed by expression 

1  Th e Engineering Research Plan for the WATERS 
Network defi ned a cyber-infrastructure in the following 
terms (WATERS, 2007a): “A cyberenvironment [cyber-infra-
structure] is an integrated system for automated collection, 
storage, retrieval, and analysis of data accessible by multiple 
parties through a Web portal. It includes various tools for 
real-time collaboration with other remotely based research-
ers and provides access to the monitoring information col-
lected by an observatory’s fi eld facilities, as well as historical 
and other relevant data. Analytical (e.g., statistical), model-
ing, and visualization tools needed to conduct engineering 
analyses are provided within the system. An operational 
cyberenvironment also could include control and feedback 
systems for decision-making and management.”

Grand Challenges of Th e Future

For Environmental Modeling
In the Setting of NSF’s Environmental Observatories Initiatives

of the challenge itself; with then a discussion of some 

indicative lines of possible responses to the challenge. 

While composition of this White Paper has been 

prompted by the EO initiatives, our grand challenges 

have been evolving over the years, and will endure 

into the future, irrespective of the substantial current 

commitments to plans for realizing the ambitions of 

the Observatories. Th ey therefore merit signifi cant 

consideration as matters for further research in their 

own right.

Our thirteen challenges span the three domains of:

Science, predominantly so, and especially 

in respect of bringing together thinking and 

research from across the above disciplines, 

and indeed from beyond them (reaching 

notably into the biomedical sciences);

Policy, given the vital role of computational 

models in decision support for 

environmental stewardship; and

Society, in view of the great, contemporary 

debate over sustainable development of the 

biosphere.

Motivated by NSF’s EO initiatives, nevertheless, 

this White Paper is concerned to assess how those 

initiatives, with all their technical innovations in 

monitoring and sensors, as well as the prospective 

environmental cyber-infrastructure, have collectively: 

(i) created entirely novel and unexpected challenges; 

(ii) accelerated our approach to identifying and 

defi ning otherwise less swift ly emerging challenges; 

or (iii) signifi cantly changed our opportunities for 

successfully responding to long-standing, recalcitrant 

challenges of the past several years, if not decades.
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Abstract

Four recommendations are made. Th ey are intended 

to be generally indicative of the mix of strategies that 

might eventually be deployed for developing and 

implementing specifi c responses to specifi c challenges. 

Especially important in this will be the determined 

pursuit of more than a superfi cial appreciation 

and cultivation of the “people skill-set” required 

for the conduct of inter-disciplinary research. Th e 

recommendations of this White Paper are also intended 

to complement, not duplicate, recommended actions 

now emerging from the science and education plans of 

the EOs themselves. Th ere are two recommendations of 

a more specifi c nature, however:

(i) Th e procedures of Observing System 

Simulation Experiments (OSSEs) should 

be applied sooner rather than later 

in designing the Observatories, and 

certainly before their construction; and

(ii) Having now brought together the 

community associated with this 

cross-cutting theme of environmental 

modeling, the fruits of that eff ort should 

not be allowed to dissipate through lack 

of support for its active promotion and 

management in the future.

Passive management, or management “by default”, 

in contrast, will not be a successful strategy for 

responding to what we are about to express as the 

grand challenges of the future for environmental 

modeling.
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How to Use this White Paper

Th e length of this White Paper may be both striking and off -putting to the reader. We off er the following advice, 

therefore, on how to make the most of the work invested in composing it.

Th e following Executive Summary largely comprises expression of the Grand Challenges and Recommendations 

(exactly as they appear in the main body of the Paper). Th ese are linked together with just the minimum of logic 

necessary to convey an impression of the coherent whole.

A separate Synopsis, wherein the logic generating the coherent whole is provided in a more expansive, but 

nevertheless succint, form, is available for downloading at www.modeling.uga.edu/EOModels.

In the main body of the White Paper, we have placed lengthier background, illustrative, or exemplary material in 

boxes. Th is material is entirely integral to our justifi cations for singling out the various Challenges, or to indicating 

possible lines of responses to them. Th e purpose of setting such material aside in this manner, however, is to allow 

the reader to focus on following the overall logic of the White Paper, yet in more detail than in the Synopsis.

Finally, some words must be off ered on the matter of what is understood as a model. Any logical “if”-“then”, or like, 

rule of (mental) reasoning could constitute a model. Belief Networks (BNs), for example, are formally organized 

stacks of such rules, realized in encoded, algorithmic form and manipulated on the computer for deducing 

outcomes from premises and assumptions. Th e distinction is a fi ne and subtle one, however, between where mental 

reasoning should cease, because of the danger of inconsistent and erroneous reasoning with too many such rules, 

and computations be commenced with a formal, numerical BN model. It is less subtle in the case of a diff erential 

equation as the model. Most, if not all, models would, or should, have begun in this way, through the rules of 

mental reasoning, before the arrival of diff erential calculus, or when puzzling for the very fi rst time over how an 

algal cell grows and divides. In Environmental Science, we have come to equate a model with a set of diff erential 

equations, even though it is self evident that other forms of model, such as agent-based models, are now prominent 

objects of study and manipulation on the computer.

“Model”, as used herein, will signal anything that has passed beyond the fi ne and subtle line of mental reasoning 

into numerical manipulation on a computer. But while this implies that any form of model along the continuum 

from BNs to partial diff erential equations will come within the purview of this White Paper, it is acknowledged that 

models as sets of diff erential equations are the predominant form of model of concern and discussion. It could be 

argued, of course, that it should be the purpose of the Environmental Observatories and the environmental cyber-

infrastructure to propel the evolution of any model of an environmental system along this continuum towards 

diff erential equation forms.

Preface
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Executive Summary

MOTIVATION

Th e National Science Foundation (NSF) is supporting 

the development of three major Environmental 

Observatory (EO) initiatives, in the Ocean Sciences, 

Ecology, and Hydrology-cum-Environmental 

Engineering. Modeling, and the mathematical 

problems and methods it encompasses, provides 

a natural language for communication across the 

various disciplines contributing to the EOs. With this 

in mind, NSF supported a Workshop in May, 2006, in 

Tucson, Arizona2,  to begin assessing the views of the 

environmental modeling community on how it might 

collectively contribute to the success of the planned 

EOs. Design of the Workshop and overall design of this 

White Paper, duly informed by the proceedings of the 

Workshop, were the responsibility of a Committee of 

sixteen scientists and engineers, chaired by M Bruce 

Beck of the University of Georgia. Th e content of the 

White Paper has subsequently been developed from an 

extensive review of the contemporary literature. Th e 

result is a set of Grand Challenges — their origins, 

context, and possible lines of enquiry in response to 

them — for the future of research into Environmental 

Modeling.

CONTEXT

Environmental models, as we have come to know them 

over the past half century — as predominantly digital 

computer realizations of diff erential-equation solvers — 

are not going to “go away”, no matter how much some 

members of the Environmental Science community 

might wish it so (Pilkey and Pilkey-Jarvis, 2007). Great 

tension between empiricist and theorist is present in 

the heated contemporary debate over whether climate 

change infl uences hurricane intensity and vice versa 

(Mooney, 2007). Such is the stuff  indeed of popular 

fi ction (Crichton, 2004). Models are destined to become 

ever more complex, tending towards Virtual Realities. 

Th at progression, however, will not expunge uncertainty. 

In response to Moorcroft ’s question (Moorcroft , 2006), 

we are still some distance, perhaps considerable indeed, 

2 Original material for the Workshop can be found at 
www.modeling.uga.edu/EOModels

from a “predictive science” of the biosphere. And people 

and policy-makers will use models, for good (NRC, 

2007) and ill: to shape environmental policy to the 

likes of their special interests, or repel, oppose, or delay 

unwanted policy, and in what are called scientifi cally 

untenable ways (Pilkey and Pilkey-Jarvis, 2007).

Th e environment, the biosphere, are just too complex for 

us to reason through the needs of Policy without models. 

Yet the more complex the models themselves become, 

paradoxically the less they may be trusted by the public, 

and the greater the surprise (to some) when models fail 

to account for what comes to pass in actuality, as they 

surely will. Climate models inevitably have incomplete 

structures and the various alternative models tend to 

have similar model structures. Consensus can seem 

stronger and more brightly illuminated than it ought, 

while signifi cant unknowns and possibilities at the 

periphery of our understanding and vision are left  to 

lurk in the shadows (Oppenheimer et al, 2007).

Some, examining the use of models for forecasting 

in the domain of Environmental Science, from their 

perspective in business and econometric forecasting, go 

so far as to charge this (Green and Armstrong, 2007):

Th e forecasts in the [2007 IPCC WG1] Report 

were not the outcome of scientifi c procedures. 

In eff ect, they were the opinions of scientists 

transformed by mathematics and obscured 

by complex writing. Research on forecasting 

has shown that experts’ predictions are not 

useful in situations involving uncertainty and 

complexity. We have been unable to identify 

any scientifi c forecasts of global warming. 

Claims that the Earth will get warmer have 

no more credence than saying that it will get 

colder.

Models, then, have joined the armory of Policy Foresight 

and Science, but as a two-edged sword: Models à la Mode 

—  the Promise and Peril of Integrated Environmental 

Modeling, as Clarke entitled his 2004 paper (Clarke, 

2004) for the Foresight and Governance Project of the 

Woodrow Wilson International Center for Scholars 
(Washington, DC).
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Executive Summary

THE CHALLENGES

Challenge # 0: Models and the Growth of Knowledge

Neither Environmental Science nor modeling has 

been the object of sustained enquiry by philosophers 

of science. If there has been any philosophy of 

environmental modeling, it has been one of: as 

computational capacity grows, so larger sets of 

equations may be solved simultaneously, hence — all 

else being equal — we shall have models that are ever 

better approximations of the truth of the matter. We 

ask, then, as a Grand Challenge arching over the 

entirety of this White Paper:

How does knowledge grow through the 

deliberate development, evaluation, and use 

of a computational model? What, in fact, 

should be a proper, sound philosophical 

basis for employing models, by design, in 

this context of basic scientifi c discovery; and 

how can the community of environmental 

modelers contribute to the construction of 

these philosophical foundations?

Challenge # 1: Global Issues of Science

Beyond the customary view of them as formal archives 

of constituent scientifi c hypotheses, models can be 

exploited in a more active manner:

Given the proposed Environmental 

Observatories (EOs), how can we design 

and employ models for the identifi cation 

of important scientifi c questions in 

Environmental Science, with the 

accompanying potential for basic scientifi c 

discovery, in particular, at the interfaces 

between — and in the interstices amongst — 

the various disciplines within that Science?

Such questions of a global scientifi c nature, associated 

expressly with modeling, are defi ned not in the sense 

of “extending over the entire globe”, but in the sense 

that they can only be perceived and addressed when a 

(reasonably complex) model of the multi-disciplinary 

whole has been assembled from the mono-disciplinary, 

sub-model parts.

Challenge # 2: Role of Cyber-infrastructure in 

Addressing Global Issues

Delving more deeply into the computational mechanics 

of responding to Challenge # 1:

What kinds of soft ware platforms within 

the environmental cyber-infrastructure 

will be necessary for supporting extensive, 

heuristic experimentation with a model’s 

structure, i.e., in facilitating experimental 

“rewiring” of its constituent hypotheses 

and their interconnections in the assembly 

of the whole, while the inter-disciplinary 

community of environmental scientists works 

at formulating and resolving core science 

questions in the interstices amongst the 

constituent disciplines?

How, for example, could the environmental cyber-

infrastructure — as the complement of the manual 

labors of the scientifi c analyst under Challenge # 1 — 

increasingly automate coverage of all the gaps amongst 

the disciplines, so that the potential discovery of 

signifi cance is not overlooked? At the same time, how 

could it facilitate discrimination of the singularly key 

from the plethora of potentially spurious constituent 

hypotheses of which the multi-disciplinary whole of 

the model has been composed?

Challenge # 3: Universal Science Issues and Process 

Mechanisms

We know that variations across scales of observation 

and simulation are crucial to understanding and 

stewarding biodiversity and resilience of behavior in 

environmental systems:

Is there a unifying and uniquely distinctive 

approach to the use of models in exploring 

issues of scale, and cross-scale interactions, 

along each of the three dimensions of (i) time, 

(ii) space, and (iii) biogeochemistry, where 

this last manifests itself across scales from 

molecular biology up to all the chemical 

and biological species comprising whole 

ecosystems?
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Challenge # 4: Universal Science Issues of a Biological 

Nature

We may be forgiven for believing we live in a 

“biological age”. All of the “Recommended Immediate 

Research Investments” of the NRC’s 2001 Report on 

the Grand Challenges of Environmental Sciences (NRC, 

2001) relate to ecology. Hence:

What breakthroughs are needed in order 

to develop a more eff ective and complete 

paradigm of modeling biological processes — 

common to the ocean sciences as much as to 

terrestrial ecology or biological wastewater 

treatment — across all scales: from molecular 

biology to whole ecosystems, and including 

mimicking of the intelligence and metabolism 

of individuals in a population, their 

movement through an environment, and 

their interactions with other individuals, as a 

function of that intelligence and metabolism?

What novelty might then be unleashed by turning 

insights, acquired from working with the Individual 

Based Models of ecological and social systems, towards 

study of the predominant physics and diff erential-

equation models of Hydrology and the Ocean Sciences?

Challenge # 5: Applied Mathematics and Generic, 

Dynamical Systems Properties

While there is the scope for signifi cant rewards to be 

returned from bringing together the various disciplines 

of the EOs through the devices of modeling, so the 

community of environmental modelers should be 

assiduous in ever looking outwards from the confi nes 

of their own collective discipline:

Building on the shoulders of the various 

mathematical theories of catastrophe, chaos, 

and complexity — but with the ambition 

to go beyond these — what new insights 

into the generic and fundamental dynamic 

properties of the behavior of systems can be 

obtained from the deliberately orchestrated 

in situ observation of the behavior of many 

specifi c environmental systems and the 

modeling thereof? In particular, how can 

the rich experience of elucidating these 

generic features from studies of whole 

ecosystems, indeed social-ecological systems, 

be productively interfaced with exploration 

of the novel properties of dynamical 

systems behavior yet to be discovered in 

the study of cellular metabolism, self-

repair, and self-replication? How can 

coordination of relevant research across 

all of the Environmental Observatories 

uniquely accelerate such development? 

Looking towards Challenge # 12, how can 

the community of model-builders in the 

Environmental Sciences best be organized so 

as to benefi t as much as possible from novel 

developments in modeling in general, as they 

arise in, for example, the quite disparate 

disciplines of the biomedical sciences, 

social sciences, cognitive sciences, artifi cial 

intelligence, and artifi cial life?

How, in other words, might study of the behavior 

of specifi c environmental systems contribute to the 

development of generic theories about the behavior of 

dynamic systems?

Challenge # 6: Observatory Network Design and 

Operation

We know well enough the merits of Observing System 

Simulation Experiments (OSSEs). Th eir future use in 

the design of the EOs constitutes the rare exception of 

being a specifi c recommendation of this White Paper. 

But what of the subsequent stages in the life cycles of 

the Observatories, for which we ask:

Given a mature complex of environmental 

cyber-infrastructure and sensors, with — 

crucially — both an ever-alert monitoring 

and horizon-scanning facility and in-

depth capacity for real-time processing 

of information and production of 

knowledge, what kinds of novel, model-

based computational schemes of adaptive 

environmental sampling will be needed 

to enable rapid re-targeting of observing 

capacity for on-line probing of, and 

experimentation with, systems behavior?

Th e cyber-infrastructure of Mahinthakumar et al 

(2006) — inspired by the emergence of “Dynamic 

Data Driven Applications Systems” (DDDAS; Darema, 
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2005), and intended for threat-response in public, 

potable water supply systems — is one instance of the 

vision implied in answering such a question.

Challenge # 7: System Identifi cation

Th is, which is to say, model calibration writ massively 

more richly, is pivotal in reconciling observation with 

theory. As a problem it has been long-standing and 

inadequately treated, and largely, but not entirely so, 

because of the historic absence of adequate streams 

of fi eld data. Th e unresolved, but engaging, tension 

between empiricists and theorists in Mooney’s 2007 

popular-science book Storm World, provides every 

reason for why our community should be drawn to this 

challenge:

Under the expectation of massive 

expansion in the scope and volume of fi eld 

observations generated by the Environmental 

Observatories coupled and integrated with 

the prospect of equally massive expansion in 

data processing and scientifi c visualization 

enabled by the future environmental 

cyber-infrastructure, what radically novel 

procedures and algorithms are needed to 

rectify the chronic, historical defi cit of the 

past four decades in engaging complex 

models (VHOMs)3 systematically and 

successfully with fi eld data for the purposes 

of learning and discovery and, thereby, 

enhancing the growth of environmental 

knowledge?

Th e environmental cyber-infrastructure holds out 

the promise of supporting the “tinkering paradigm” 

from Challenge # 2, of rewiring at will the constituent 

hypotheses assembled in the model. Scientifi c 

visualization and animation of the conceptual 

structure of the model — not its input or output data 

fi elds — can be expected to be a necessary part of 

realizing this intellectual support.

Challenge # 8: Predictive Science and Uncertainty

Taking a lead from the question that is the title to his 

paper (Moorcroft , 2006), “How Close Are We To a 

3  Very High Order Models.

Predictive Science of the Biosphere?”, this White Paper 

enquires:

Recognizing the inevitably fl awed and 

uncertain conceptual foundations of 

many environmental models — while 

acknowledging the possibility of natural 

features of biological acclimation, even 

evolution, over a longer-term horizon, 

especially in response to the introduction of 

invasive species, and the high likelihood of 

continual adaptation in the behavior of many 

types of environmental system — how are 

structural error/uncertainty and structural 

change in these models to be identifi ed, 

quantifi ed, rectifi ed, and accounted for (in 

the propagation of prediction errors and the 

making of decisions)? What new schemes of 

generating environmental foresight will be 

needed to cope with these challenges?

And to some considerable extent, the rejoinder to 

Moorcroft ’s question can be found in Oppenheimer 

et al (2007), who in their turn question the value 

of premature consensus around climate change 

assessments, when in truth structural error/uncertainty 

in models seems both inevitable and to be guarded 

against.

Challenge # 9: Assimilating Data and Processing 

Information in Real-time

To be able to conduct the aff airs of science and 

environmental engineering in “real-time” is 

recognized as a major opportunity for the community 

of environmental modelers. It is in keeping with 

the general quickening of the pace of things, as a 

manifestation of contemporary society. Under the EO 

initiatives, employing models and signal-processing 

algorithms in real time has all the thrill of conquering 

some fi nal technical frontier:

In a world of increasing inter-connectedness 

and instantaneous communication, 

environmental vulnerability, and 

infrastructure systems fragility — subject 

in all probability to higher-amplitude 

extreme events, natural disasters, terrorist 

threats, and the like — how best can the 

expected innovations in cyber-infrastructure 
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and sensors under the Environmental 

Observatories programs be used in 

developing models and real-time data-

processing and forecasting algorithms: for 

the on-line detection of faults, failures, 

anomalies, and the weak signals portending 

imminent dislocations in system behavior; 

and for orchestrating/guiding rapid counter-

measures for enhancing and resuscitating/

reviving damaged system functioning, system 

survivability, and resilience?

Whereas Challenge # 6 asked how might models be 

used to inform the deployment and re-deployment 

of observing capacity in a built, operational EO, 

Challenge # 9 is now diff erent. Th e challenge is one 

of reconstructing coherent, homogeneous fi elds of 

variables internal to the model: in particular, from 

all manner of heterogeneous observing platforms 

and devices; and, in principle, across the dimensions 

of time, space, and biogeochemistry. In this — as 

opposed to many of the preceding Challenges, 

wherein questions of a biological or ecological nature 

tend to predominate — studies tied to the relevant 

physical attributes of Hydrology and Oceanography 

are expected to continue to be in the vanguard of 

responses.

Challenge # 10: Management and Decision-support

In the measured prose of any report from the National 

Research Council, we fi nd acknowledgment of a 

turning away from the prevailing view of models 

as “truth-generating machines” towards an outlook 

embracing other perspectives, most notably that of the 

model as a “tool”, such as a hammer or screwdriver, 

designed to fulfi l, in particular, the predictive tasks 

of supporting regulatory, environmental decision-

making (NRC, 2007). In more colorful terms, van der 

Sluijs (2007) introduces the image of uncertainty as the 

“monster” at the interface between Science and Policy 

— monstrous in the sense of confusing what were 

previously kept strictly separate, i.e., the objectivity 

of Science and the subjectivity of value systems. Th is 

White Paper asks, therefore:

Under the prospect of lengthy and costly 

social negotiation and legal discourse over 

policy formation, wherein the placing of 

trust by various stakeholders in the models 

underpinning that policy is crucial, and 

where it has come to be recognized that the 

needs of model evaluation and peer review 

for conventional research science are diff erent 

from those of regulatory science, what 

new methods of evaluating the alternative 

models designed to fulfi l the predictive tasks 

of policy formation, decision-support, and 

management for environmental stewardship 

are urgently needed? How is the uncertainty 

associated with both the model and the 

decision-making context to be handled 

computationally and what new algorithmic 

and procedural developments will this 

warrant?

Challenge # 11: Th e Long View: Towards Sustainability 

of the Built Environment

Since the greatest debate of our times is the 

“sustainability debate”, with its signifi cant 

implications for the design and operation 

of the built infrastructure at the interface 

between Man and Environment (most 

conspicuously so at the urban centers of 

socio-economic activity), how best should 

the Environmental Observatories be 

deployed and, more specifi cally, what kinds 

of models should be developed in order to 

promote a better strategic alignment of 

the study of urban metabolism with that 

of ecosystem services, all within the web of 

global biogeochemical cycles? How too, in 

the widest of possible terms, can innovations 

in information and communication 

technologies (ICT) — as realized in the 

environmental cyber-infrastructure — 

lead to tangible gains in reducing the 

unsustainability of current patterns of socio-

economic behavior?

It is easy to imagine mathematical programming and 

optimization to have been made for charting a course 

towards sustainability of the built environment: fi nd 

those policies and technologies maximizing the rate 

of departure from unsustainability, subject to their 

satisfying the constraints of being {environmentally 

benign}, {economically feasible}, and {socially 

legitimate} — the triple bottom line. A fi ne line indeed 

separates what of human nature, preferences, and 
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values should be approximated and manipulated by a 

model and what should rightly remain in the space of 

public debate and democracy.

A simulated life-time of your simulated self with your 

personal/private preferences, undergoing forms of 

learning and negotiation with other simulated beings 

over aspirations for less unsustainable futures, is in 

prospect. Environmental modeling, and those who 

construct and use models, may increasingly be drawn 

into the unfamiliar territory of unusual and novel 

questions of ethics.

Challenge # 12: Community Structure

Looking across the Grand Challenges now expressed, 

each calls for investments in changing habits of mind 

as much as in equipment, computing, specialized fi eld 

campaigns, and so on. We ask therefore:

What steps can the community of model-

builders in the Environmental Sciences take 

to pre-empt and reduce to a minimum the 

still readily apparent scope for re-inventing 

the “wheels” of modeling in contemporary 

research across the various disciplines of 

the EOs? How can our community best be 

organized so as to benefi t as much as possible 

from novel developments in modeling in 

general, as they arise in, for example, the 

quite disparate disciplines of the biomedical 

sciences, social sciences, cognitive sciences, 

artifi cial intelligence, and artifi cial life? 

More broadly, how should the community 

of modelers best work with the community 

of primary fi eld scientists to promote the 

development of models for basic scientifi c 

discovery at the interfaces amongst multiple 

disciplines? In the light of universal and ever-

more urgent calls for profound changes in 

the manner in which the next generation of 

scientists and engineers is educated, trained, 

and formed — all of which calls focus on 

“inter-disciplinarity” — what special role 

can models serve in meeting these needs?

RECOMMENDATIONS 

Two general and then two specifi c recommendations 

follow.

Recommendation # 1: Within Community 

Orchestration: Substance Not Form

Models, as the lingua franca for communicating 

amongst the Ocean Sciences, Ecology, Hydrology, 

and Environmental Engineering, are integral to our 

becoming inter-disciplinary.

Having brought a signifi cant proportion 

of the community together, through a 

Workshop, and now — by virtue of the 

literature reviewed herein — this White 

Paper, it would be a missed opportunity 

not to provide the wherewithal for the 

continuing active maintenance, development, 

and scientifi c prosperity of the modeling 

community under the EO initiatives.

Inasmuch as not all of us have the talents for becoming 

an astronaut or brain surgeon, not everyone is suited 

to engaging fully and eff ectively in inter-disciplinary 

work, including when the object of enquiry is the 

development and application of models. Substance, 

as in recognizing and cultivating an appropriate set 

of “people skills”, may be more important than the 

organizational and administrative form of community 

orchestration.

Recommendation # 2: Cross-Community 

Communication: Attaining Th e Bigger Picture

Th e mathematical methods of modeling, like the 

soft ware and algorithms of an environmental cyber-

infrastructure, can seem opaque and impenetrable 

when radical inter-disciplinarity and cross-

communication are called for, between the technical 

expert and the technically lay person, even when 

seemingly so little as the divide between the fi eld 

science and the modeling must be bridged. Th e oft -

heard plea to “Let the data speak for themselves” is 

revealing of the attitudes of other professional scientists 

towards modeling and modelers.
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Given that modeling cannot proceed in a 

vacuum, detached from reality, case studies 

and case histories should be prepared and 

packaged in forms designed to serve the ever-

present need of the modeling community to 

build and maintain fruitful relationships 

with a variety of other communities — of 

philosophers, scientists, engineers, scholars, 

policy-makers, and the public — in 

developing the beginnings of responses to the 

Grand Challenges.

Environmental modeling has now a history of at least 

four decades to look back upon. Th is is long enough 

for us to discern the signifi cance — or otherwise — of 

models: from their role in the philosophy of science 

and the growth of knowledge, to that in the successive 

and “jerky” exchanges between Science and Policy, 

such as those recorded in Dennis (2002) and Schertzer 

and Lam (2002). Th e very struggles within our own 

community, to attain that strategic sense of the “big 

picture”, should facilitate its articulation in a variety of 

more comprehensible forms for a variety of audiences. It 

is time to engage in such struggles.

Recommendation # 3: Models for Design/operation of 

the EOs

Given the maturity of Observing System 

Simulation Experiments (OSSEs), and their 

obvious potential role in the design of all the 

Environmental Observatories, investment 

in the work needed to respond to this facet 

of Challenge # 6 is recommended. In seeking 

progress on a variety of fronts, however, such 

investment should be directed beyond the 

pragmatic needs of EO design, for example: to 

furthering the social and professional aspects 

of bridging any divides between the fi eld-

science and model-building communities; 

and to propelling OSSEs as much as possible 

beyond the current state of their art.

As generally understood in an OSSE, simulation is based 

on sets of diff erential equations as representations of 

the observed system’s behavior. Developing schemes 

of OSSEs founded upon the Individual Based Models 
(IBM) typical of Ecology appears to remain as yet an 

essentially untouched domain of research.

Recommendation # 4: Training the Next Generation

Having argued a case in favor of the special 

role of models, as the lingua franca of 

inter-disciplinary research, we recommend 

investigating the merits of complementary 

alternatives to vehicles such as NSF’s 

Integrated Graduate Education Research 

and Training (IGERT) schemes for the 

purpose of training the next generation of 

environmental modelers.

We would not want to pursue any alternative, however, 

without a systematic prior assessment of how young 

researchers mature to become leaders of inter-

disciplinary thinking.

CONCLUSION

Models need data for their evaluation. Essentially, we 

wish to know whether the model approximates well 

enough the behavior of the real thing. Imagining a 

future with High Volume High Quality (HVHQ) 

streams of data emanating from the Environmental 

Observatories is to look beyond a “nonlinear” 

break with the terms and conditions under which 

Environmental Modeling has labored in the past. 

Reconciling Very High Order Models (VHOMs) with 

the HVHQ data of the EOs, in the workspace of the 

future environmental cyber-infrastructure attuned to 

provoking new knowledge, has thus the air of a Grand 

Challenge that is primus inter pares.
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Chapter 1: Why Models?  3

What we can all readily 

appreciate today about the 

behavior of our environment 

is its complexity: massive 

in its extent, yet impressively subtle and almost 

incomprehensibly intricate in its detail. We can reason 

with classical pencil and paper about the ramifi cations 

of man’s actions — disturbances and perturbations 

of the environment — up to a point. Beyond that, our 

reasoning over the past 40 years or so has become 

progressively more reliant on the development and 

application of computational models.

Indeed, the uniquely distinctive and essential role of a 

model is to allow us to grapple with such complexity. 

Th is is especially true in respect of being utterly 

systematic in connecting together multiple, constituent 

hypotheses — each of greater or lesser security — about 

the behavior of complex systems. While we would not 

use computational models to reason through elementary 

problems (except where extremely fast, unerring 

decisions must be made, as in automated, real-time 

control), the inner workings of models of complex 

systems must nevertheless ultimately be comprehended 

succinctly: by model developers, from a multiplicity 

of disciplines; by model users; policy makers; and by 

those scientifi cally lay parties aff ected by the decisions 

guided by models. Th e irony, then, is that in the end our 

essential understanding of the environment — albeit 

duly informed by models — may have to be expressible 

in just the ordinary terms to which pencil and the 

proverbial “back of an envelope” naturally confi ne us.1

No-one, of course, is conceiving of the Environmental 

Observatories (EOs) of the National Science Foundation 

1 Th e evidence from research on judgement and 
decision-making still errs towards the essential conclusion 
from Kahneman et al (1982): that a great deal of our reason-
ing and deciding is based on simple heuristics, which reduce 
what would otherwise be a process consuming vast computa-
tional resources and time in order to arrive at a “normatively 
correct solution” (Ayton, 2007). Essentially here, all involved 
parties must — somehow — come to judgements inter alia on 
the quality and reliability of models and their forecasts.

(NSF) in the absence of a signifi cant role for models. Th is 

Paper addresses therefore the strategic question of what 

exactly should be the elements of that “signifi cant role”: 

in support of the primary science to be conducted under 

the auspices of the EOs; in articulating the fruits of that 

science at the interfaces amongst environmental science, 

policy, stewardship, and the public; and in promoting 

substantial advances in the scope, sophistication, and 

practical relevance of environmental modeling, in 

particular, across all the disciplines of the EOs.

We begin with some prefatory considerations of 

philosophy and method. Th ese are necessarily neither 

simple nor readily accessible to a general reader. But 

they are brief and their tone should not be read as that 

of the entirety of this White Paper.

1.1 Over-arching Challenge: Models and the 
Growth of Knowledge

We know that models can be used as succinct 

archives of knowledge, as instruments of prediction 

in support of making decisions and stewardship of 

the environment, or as devices for communicating 

scientifi c knowledge to a scientifi cally lay audience. 

But how, we must ask, might the development and 

application of models serve the purposes of basic 

scientifi c discovery and, therefore, the growth of 

knowledge? For the EOs are fi rst and foremost science- 

and research-led programs.

Let us set down, then, an over-arching challenge for 

this entire Paper.

Challenge # 0:

How does knowledge grow through the 

deliberate development, evaluation, and use 

of a computational model? What, in fact, 

should be a proper, sound philosophical 

basis for employing models, by design, in this 

context of basic scientifi c discovery; and 

how can the community of environmental 

modelers contribute to the construction of 

these philosophical foundations?

Chapter 1: Why Models?
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In an article on interactive computing as a teaching 

aid, MacFarlane (1990) presented a three-element 

characterization of knowledge. According to the 

American philosopher Lewis these three elements are 

(as reported by MacFarlane):

(i) the given data;

(ii) a set of concepts; and

(iii) acts which interpret data in terms of 

concepts.

While we do not propose to enter here into any 

deep philosophical treatment of our subject nor 

suggest that we subscribe solely to Lewis’s particular 

philosophy of science — for those are in fact the 

subjects of the challenge — we note in passing that 

he was associated with the American pragmatist 

school of thought. Rather, these three pillars, and 

their inter-relationships, will help to structure 

our introduction of this Paper and therefore 

clarify the roles of modeling within the EOs.

Th us, for example, we can see that the impact of 

the EOs on the given data in this schema should be 

substantial and profound. Excellence in modeling 

cannot be achieved in the absence of fi rst-class data for 

rigorous (whole) model testing and evaluation.

Just as profound, if not more so, should be the 

impact of the environmental cyber-infrastructure on 

mechanizing the set of concepts in computable form 

— although we should take care not to confuse the 

notion of a computational model entirely with the set 

of concepts or a theory. For models are a secondary 

science, in the sense of enabling organized assembly 

and encoding of the distilled knowledge emerging from 

the primary fi eld sciences. But that distilled knowledge 

is not indisputable fact. It is an assembly of a host of 

constituent “atomistic” theoretical elements, each 

themselves refl ecting individual hypotheses quarried 

from laboratory science or a particular fi eld science, 

oft en craft ed in disciplinary compartments without 

the benefi t of the entire picture of the whole system 

necessarily in mind. Th e environmental systems 

we observe and study behave as indivisible wholes, 

however, so that a basic question becomes: when placed 

together in the organized structure of a computational 

model, which of the constituent hypotheses are 

adequate/inadequate, in terms of determining the 

performance of the whole; and how should the 

inadequate constituents be removed, modifi ed, and 

re-introduced in more adequate form? Th e urgency of 

this matter can only but grow as mounts the number of 

constituent hypotheses upon which one wishes to draw 

(for a description of the real system’s behavior).

What will be the implications of these profoundly 

important advances — in the sensing technologies of 

the EOs and in the environmental cyber-infrastructure 

— for Lewis’s acts which interpret data in terms of 

concepts? Indeed, how does this interpretation actually 

come about? How does one, for example, reconcile a 

large-scale geophysical model of global deglaciation 

with (reconstructed) relative sea level observations 

at 392 sites spanning a period of some 15,000 years 

(Tushingham and Peltier, 1992)? More specifi cally, 

which constituents of the very large and very complex 

assembly of micro-scale theory is at fault when 

the model fails — as inevitably it does — to match 

the relatively macroscopic historical observations? 

Interpretation is a result of juggling with, and sift ing 

through, a unique assortment of disparate facts and 

fi gures assembled by the individual, upon which some 

kind of order is eventually imposed. It is a subjective 

mental process.

In short, that there will be signifi cant developments 

in the technical support necessary for engaging the 

model in a meaningful interpretation of the data, is by 

no means assured. News of advances in computational 

capacity is abundant (witness NSF, 2006); news of 

advances in the technology of instrumentation and 

remote sensing is commonplace (witness NSF, 2005); 

news of the increasing capacity of the brain to juggle 

with disparate facts and concepts is non-existent. In 

this resides arguably the greatest of opportunities to 

fl ow from the EOs and the oncoming environmental 

cyber-infrastructure for the future of environmental 

modeling — as in responding to what will be expressed 

subsequently  as our grand Challenge # 7.2

Lewis, of course, off ered up his philosophical 

views long before computational models were in 

widespread use. His three-element characterization 

of how knowledge grows must be re-visited and 

now re-examined, especially in the light of our own 

personal experiences as modelers. For why should 

not those of us working at the “coal face” of modeling 

environmental systems refl ect on how we have gone 

about our research over the past several decades, thus 

to contribute to building a contemporary perspective 

2 Th roughout this Paper grand challenges will be de-
noted with this typeface.
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on the philosophical basis for the role of models in the 

advance of scientifi c knowledge? Th e paper of Beven 

(2002) is one such exemplar, albeit biased towards the 

physics of water fl ows in hydrology, as opposed to the 

biogeochemistry of ecology. Th e book by Petersen 

(2006) is a more substantial, deeper treatment, devoted 

to the physics and chemistry of climate science. Th ere 

should be others. Th is is precisely the intent of our 

Challenge # 0, along with its appeal to philosophers of 

science to join us practitioners in responding to it.3

One of the most important developments of 

the past 10-15 years, at least in environmental 

engineering (water quality modeling), has been the 

introduction of comprehensive, multivariable, real-

time monitoring systems, i.e., systems providing 

high-frequency sampling of behavior along the three 

continua (dimensions) of (i) space, (ii) time, and (iii) 

biogeochemistry (improving capabilities greeted 

with enthusiasm in, for example, Kirchner et al, 

2004). Progress outwards from the origin of Figure 

1 is intended to encapsulate not only this increasing 

intensity of sampling — at more points in space, time, 

and biogeochemistry4 — but also its extent, as in 

observing at ever higher sampling frequencies over ever 

longer (unbroken) periods.

Once was the situation (point A in Figure 1) when little 

more than temperature, pH, conductivity, or dissolved 

oxygen concentration were readily measurable at 

isolated locations in a watershed. Today, automated 

observing capacity has been projected beyond these 

more customary physical and chemical segments of the 

biogeochemical continuum (in aquatic systems) into 

access to nutrients and macroscopic features of micro-

biology, for instance, chlorophyll-a and indicators of 

bacterial respirometry. Time-series such as those of 

Figure 2, therefore, refl ect a sampling frequency of once 

every 15 minutes or so (in a record of over two months 

in extent), at six spatial locations no more than tens of 

meters apart, in the “sensor-hostile” environment of 

a biological wastewater treatment plant — point B in 

Figure 1, as it were.

3 And there are those so inclined, for example, Ravetz 
and Funtowicz (Funtowicz and Ravetz, 1990), Morton (Mor-
ton, 1993), and Oreskes (Oreskes et al, 1994).

4 We suppose this continuum to be gauged (loosely) 
in terms of the following illustrative sequence of sampling 
points, of increasing size of entity: OH- ion; enzyme; bacte-
rial cell; zooplankton; fi sh; and so on.

Progress such as this, doubtless hard won, has had two 

signifi cant consequences. First, and in contrast to the 

preceding, prevailing thrust of modeling, it has become 

untenable to reject discrepancies between observed 

and estimated behavior as the result of inadequate data 

— in particular, in the case of very high-order models 
(VHOMs).5 Th e alternative inference has to be that 

either the constituent hypotheses drawn from primary 

science are not correct, or that they are correct, but 

have not been assembled in the correct organizational 

(multivariable) manner. Second — as the complement 

of the classical procedure of designing a laboratory 

experiment, wherein all variables are in fact kept 

invariant, except those describing the cause and eff ect 

of the archetypal single hypothesis relating one to 

the other — reconciling models with fi eld data (our 

Challenge # 7) requires and enables, by contrast, the 

testing of an entire complex of multiple, interacting, 

elemental experiments, as a whole, as these would 

be encountered in situ. Indeed, the very innovation 

of the EOs can be expected to move the subject of 

Environmental Science still further away from a 

reliance primarily on the classical scientifi c paradigm 

of controlled experiments.

5  Where “high order” refers to the numbers of state 
variables, parameters, and/or rules in the model.

Figure 1

Three-dimensional volume — of time, space, and biogeochemistry — in 
which to gauge advances in the intensity, extent, and diversity of instrumen-
tation and sensor systems for observing the environment. For the purposes 
of illustration: (A) where we were 20-25 years ago, say, in respect of 
monitoring water quality; (B) contemporary capabilities. A similar fi gure, we 
note, has come to be known as “Maidment’s Data Cube”.
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Time-series observations of water quality (orthophosphate-P, ammonia-N, total oxidized nitrogen, nitrate-N, total organic carbon, and dissolved oxygen concentrations) in the 
biological treatment unit of the Athens, Georgia, Water Pollution Control Facility # 2, during Winter, 1998. These are part of a data base collected through the Environmental 
Process Control Laboratory, University of Georgia, a mobile platform for real-time monitoring of water quality in various aquatic environments. They are accessible and freely 
available, along with other like data bases, at www.modeling.uga.edu/gwis.

Figure 2
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Lewis’s three-element characterization of knowledge 

growth may therefore no longer suffi  ce for guidance. 

MacFarlane himself asserted long enough ago that 

(MacFarlane, 1990):

Modern scientists and engineers no longer 

work only in terms of theory and experiment. 

Th eir attack on the problems of describing 

Nature and on creating useful artefacts now 

has three fronts:

• experiment

• theory

• computation

Computation is opening up vast new 

continents in Popper’s World 3.

To build upon this, and thereby to defi ne briefl y the 

contents of Popper’s three “Worlds” (Popper, 1972), 

our philosophically naïve expectations of these three 

elements should be these:

Experiment: Designed to probe the nature of 

Popper’s World 1, which is the physical world, 

or world of physical states;

Th eory: A conjecture drawn from Popper’s 

World 2, that being the mental world, or the 

world of mental states; and

Computation: A conjecture drawn from 

assimilation of the (unexpected) consequences 

of computational simulation, i.e., from 

Popper’s World 3, the world of all possible 

objects of thought, existing outside and 

independent of any individual. Presumably, 

this would be especially the case for 

computationally derived “consequences”, 

which practically could not have been 

reasoned about in Popper’s World 2 (because 

what is being simulated is simply far too 

complex for unerring, mental reasoning 

alone).

Given these, the possibility of three kinds of “acts” is 

opened up:

Acts # 1: Th e familiar acts of reconciling 

computation (computational models) — 

not theory itself — with the outcomes of 

experiments and experimental/observing 

experience;

Acts # 2: Th ose which Lewis must originally 

have had in mind, i.e., acts reconciling theory 

with experiment;

Acts # 3: Which enfold the matter of 

reconciling computational models with 

theory, where this now (presumably) can 

work in both ways, i.e., that computational 

models can be improved so as to mimic theory 

better (albeit never completely), while theory 

can be adapted so as to refl ect better the 

consequences of computation — could we say 

“discoveries” even? — hence to provoke new 

forms of experimentation.

In other words, understanding — that is, assimilation 

of material into an appropriate mental structure (or 

mental model) — may derive increasingly from the 

belief that the virtual computational world (Popper’s 

World 3) has been founded upon true and correctly 

applied theories at the micro-scale and does not 

generate broad, macroscopic, qualitative predictions 

in obvious, absurd discord with whatever can be 

observed of the real thing in the physical world 

(Popper’s World 1). Th is would be the embodiment of 

Acts # 1. In contrast, it seems diffi  cult to credit Acts 

# 3 with the power to fuel a growth in knowledge 

through reconciling the computed macro-scale 

consequences of micro-scale theory with that self-

same micro-scale theory. Aft er all, the entire notion 

of founding the growth of knowledge on the classical 

basis of reconciling the given data with the set of 

concepts (Acts # 2) rests itself upon maximizing the 

intellectual “distance” between the two sources of 

experience of the behavior of the world.

How exactly, then, should we go about assessing 

the scientifi c security of the constituent theories 

assembled in a VHOM? And given the unending 

nature of the quest, as ever higher-performance 

computing within the cyber-infrastructure propels 

these VHOMs towards a variety of virtual realities, 

what exactly are the distinctive challenges of 

developing and deploying such models over the next 

5-10 years? For this should go beyond the challenge 

of encoding in these virtual realities yet more of the 

purported micro-scale behavior of the environment, 

should it not?

Th e need for our Challenge # 0 to have the strongest 

possible appeal to philosophers of science should 

now be obvious, not least so given the puzzles and 

puzzlements exposed in our conjectures on the roles 
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of models in Popper’s three Worlds. Perhaps the 

nature of Acts # 3 has been incorrectly expressed 

above, so that this misleadingly suggests self-delusion 

rather than the wellspring of new questions about 

basic Environmental Science.

We shall return to these more philosophical 

considerations on several occasions. First, however, 

we need to set up a methodological framework for 

developing and applying environmental models. 

Having examined briefl y how models fi t into the 

broader philosophical picture underpinning the 

science of the EOs, therefore, our goal now is to 

introduce a helpful organizing framework for 

thinking about modeling as a subject in its own right.

1.2 Developing and Applying Models: 
Th e {u, M, y} Triplet

Let us assume the scope of model building can be 

succinctly defi ned by the triplet of the observed inputs 

(u), model (M), and observed outputs (y), and that 

the attaching tasks are those of the mathematical 

textbook: given two out of the three unknowns, 

fi nd the third. Th us, in subsequent parts of this 

Paper we shall need to enquire into the nature of the 

grand challenges associated with the three principal 

computational and algorithmic questions of:

(i) Given u and y, fi nd M. Th is we shall refer 

to as system identifi cation, i.e., principally 

Acts #1 of Lewis’s pragmatic school of 

thought on the growth of knowledge, 

under which falls the task of choosing 

the contents of u and y so as to maximize 

the “identifi ability” of M — a matter of 

the design of experiments and sensor 

networks;

(ii) Given M and u, fi nd y. Th e problems of 

forecasting, and scenario and foresight 

generation; and

(iii) Given M and desired, feared, and/or 

threatened y, fi nd u. Th e problems of 

control, management, decision-support, 

and policy formulation.

From (i) emerges a fourth question, of course, which is:

(iv) How well does M approximate the real 

thing, and what are we going to do in 

respect of the other two questions ((ii) and 

(iii)) given there is never such a match, 

i.e., that there is more or less substantial 

uncertainty to be dealt with?

In large part the ordering of these succinct questions 

— (i), (ii), and (iii) — refl ects the organization of this 

White Paper (set out in Section 1.3 below). But we 

must note briefl y here certain other features of model-

building important to its role within the context of the 

EOs.

Abstracted, as they are, the preceding tasks and 

questions clearly transcend the confi nes of study in any 

single EO. Model-building, in that sense, is generic. 

Signifi cantly, the process has the power to promote 

and nurture links across disciplines, something so self-
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evidently vital in almost all contemporary discussions 

of how we ought to be organizing scientifi c enquiry and 

educating and training the next generation of scientists 
(for example, NRC, 2001, 2004; NSF, 2006).

But a moment’s thought is needed to appreciate 

how terrestrial ecology interacts with the hydrology 

and aquatic ecology of a watershed and the built 

environments of cities, and they in turn with 

estuarine and coastal ecosystems, hence the open 

oceans. In this “whole” system, signifi cant elements 

of all the EOs are encompassed. Consider, then, 

the image of a model — for that whole — as the 

vessel into which the contributions from all of those 

relevant disciplines must be poured in a consistent 

and compatible manner. Th e systematic character 

of model-building, together with the discipline 

imposed by the formal algorithmic and mathematical 

logic of the models themselves, can at the least 

assist in eliminating daft  ideas — constituent 

hypotheses from diff erent disciplines that do not 

mesh logically together — sooner rather than later. 

From the demands of such consistency derives the 

metaphor of models aff ording us a lingua franca 

for communicating across disciplines. And in this, 

it is the process (of model building) that may be as 

important as the product (the model itself), if not 

more so.

Th ere is something less obvious, but equally as 

important, about the generic role of computational 

model-building as a cross-cutting exercise. Inasmuch as 

this can support links amongst scientifi c disciplines, so 

it can be turned to illuminating gaps in our knowledge 

in the interstices amongst disciplines. It is not at all 

self-evident, however, whether and how the capacities 

of all three EOs should be orchestrated collectively 

— through the development of models — in order to 

support studies at the intersections amongst issues such 

as biodiversity, invasive species, pathogen adaptation, 

ecosystems, and climate change, for example.

1.3 Organization: Science, Policy, and Society

Oriented thus towards Science, models might best be 

viewed as archives of hypotheses about the nature of 

an environmental system’s behavior, with the word “ar-

chive” suggesting a degree of consolidation and agree-

ment regarding the hypotheses chosen for archiving. 

Th inking of models designed (expressly) as vehicles for 

the discovery of our ignorance evokes something of a 

complementary idea: that the model can fulfi l the task 

of detecting anomalous or previously undetected fea-

tures in the system’s behavior. Guided by such revealed 

anomalies, models may be deployed as experimental 

facilities — as generators of novel hypotheses — within 

which to speculate about possible explanations of these 

anomalies, as well as to prompt questions of an essen-

tially scientifi c nature at the interstices between the dis-

ciplines of the EOs. In assembling our review, we have 

paid special attention to connections across the vastly 

diff erent scales of molecular biology and Earth Systems 

Analysis. And in keeping with the times, we have been 

especially concerned to create the future potential to 

elucidate novel, general ideas about dynamical sys-

tems behavior, at the intersection of such superfi cially 

diverse disciplines as the biomedical sciences, ecology, 

social sciences, cognitive sciences, artifi cial intelli-

gence, and artifi cial life. All these are tracked across 

Challenges # 1 through # 8 in Chapter 2 of Part II of 

this White Paper.6

It is not our view, not surprisingly, that the 

development and application of models should follow 

in the wake of any of the EOs coming to fruition, 

without their design and construction having been 

informed by current research in environmental 

modeling. Inasmuch as one of the greatest of our 

challenges relates to the role of models in reconciling 

theory with observation, equally so models can be used 

to design experiments, and to redeploy fi eld observing 

equipment as contingencies arise. Much, nevertheless, 

is expected of models. A signifi cant portion of Chapter 

2 of the Paper is devoted, therefore, to the culmination 

of this expectation (in Challenge # 8): of environmental 

science becoming a “predictive science”; and of how 

such a science must deal with uncertainty.

6  Each Challenge is presented in an identical manner. 
First its context, foundations, and justifi cation in the contem-
porary research scene are set out as preamble; the Challenge 
is then expressed; and thereaft er possible lines of response to 
the Challenge are indicated.
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As Science starts to be turned towards the needs of 

Policy and practice, so our White Paper travels over 

the challenges of assimilating data. Th ese will be data 

fully anticipated to be heading towards analysts and 

the environmental cyber-infrastructure in ever greater 

volumes at ever higher speeds, calling thus for their 

assimilation in the ever shorter-term, even in real-

time. Challenge # 9 merits its own chapter, therefore: 

Chapter 3 on Science and Engineering in “Real Time”.

Chapter 4 of Part II covers the fi nal triplet of 

Challenges # 10 through # 12. Th ese are in turn Policy- 

and community-oriented. Th ey depart from the focus 

on the “here and now” of Chapter 3 towards the use of 

models for exploring longer-term futures in support 

of decision-making, management, and environmental 

stewardship. Sustainability, and herein the development 

and deployment of associated environmental models, 

is clearly an issue embedded in the huge complexities 

of the interfaces amongst Science, Policy, and Society 
(Challenge # 11). Our discussion of it precedes our 

closing challenge (Challenge # 12), which appropriately 

we turn back on to our own community: how shall we 

begin to think of organizing our habits of work, and 

of educating and training our successors, in order to 

respond to all of the above grand challenges?

Part III of the White Paper is devoted to our 

Recommendations (Chapter 5) and Conclusions 
(Chapter 6).
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2.1 Global Issues of Science

By global science questions associated with modeling, 

we mean issues defi ned not in the sense of “extending 

over the entire globe”, but defi ned in the sense that 

they can only be perceived and addressed when a 

(reasonably complex) model of the whole has been 

assembled. In thinking about the growth of knowledge, 

our over-arching Challenge # 0 (in Chapter 1.1), the 

signifi cance and number of these issues look set to 

mount. We assert that the primary fi eld sciences 

cannot as readily — as model-building and the use of 

models — illuminate and articulate these questions, 

challenges, and properties emerging from the joined-

up thinking typical of our attempts at attaining the 

“big picture”.

Challenge # 1:

Given the proposed Environmental 

Observatories (EOs), how can we design 

and employ models for the identifi cation 

of important scientifi c questions in 

Environmental Science, with the 

accompanying potential for basic scientifi c 

discovery, in particular, at the interfaces 

between — and in the interstices amongst — 

the various disciplines within that Science?

Signifi cant recent reports and surveys by the National 

Science Foundation (NSF) and National Research 

Council (NRC), amongst others, speak of the growing 

prominence of models and modeling in basic, scientifi c 

discovery. Here, for instance, is how a report from a 

blue-ribbon panel on Simulation-Based Engineering 

Science put it — echoing MacFarlane’s earlier remarks 

(NSF, 2006):

Computer simulation represents an extension 

of theoretical science in that it is based on 

mathematical models. Such models attempt 

to characterize the physical predictions or 

consequences of scientifi c theories. Simulation 

can be much more, however. For example, it 

can be used to explore new theories and to 

design new experiments to test these theories.

Further echoes can be found reverberating around a 

recent review paper on the role of individual-based 

models (IBMs) in integrating up from the micro-scale 

of an individual organism to the macro-scale of whole 

ecosystems (Grimm et al, 2005):

 

Th is approach may change our whole 

notion of scientifi c theory, which until now 

has been based on the theories of physics. 

Th eories of complex systems may never be 

reducible to simple analytical equations, but 

are more likely to be sets of conceptually 

simple mechanisms (e.g., Darwinian natural 

selection) that produce diff erent dynamics and 

outcomes in diff erent contexts. POM [Pattern-

Oriented Modeling] thus may lead us to an 

algorithmic, rather than analytical approach 

to theory.

In a special supplement to the journal Nature 

(published on the threshold of the new millennium in 

December, 1999), Schellnhuber contributed a paper 

entitled “‘Earth System’ Analysis and the Second 

Copernican Revolution” (Schellnhuber, 1999). Its 

synopsis runs as follows:

Optical magnifi cation instruments once 

brought about the Copernican revolution 

that put the Earth in its correct astrophysical 

context. Sophisticated information-

compression techniques including simulation 

modelling are now ushering in a second 

‘Copernican’ revolution.

Schellnhuber goes on to make a particular point of 

the role of models — of an intermediate complexity 

(neither over-simplifi ed nor overly sophisticated), 

drawn from the subject of Earth Systems Analysis — 

in articulating his vision of this second Copernican 

revolution (Schellnhuber, 1999). We must conclude that 

he has basic, core, curiosity-driven scientifi c discovery 

in mind, for in a subsequent paper (Schellnhuber et al, 

2005) we fi nd this:

[D]iscovery of maximum reduction in 

stratospheric ozone came as a total surprise. 

Th is phenomenon was not predicted by 

Chapter 2: Science
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“traditional” science; it occurred in a section 

of the atmosphere furthest from the regions 

of CFC releases to the atmosphere and where 

ozone loss was thought to be impossible. Th e 

Earth System science expected to emerge 

from the second Copernican Revolution will 

have to do better by predicting at least the 

possibility of future “ozone holes” — that is, 

major disruptions of some planetary modes of 

operation.

When Moorcroft  asks “How close are we to a predictive 

science of the biosphere?”, he proceeds to defi ne 

computational models as providing the foundations of 

scientifi c understanding (Moorcroft , 2006):

[L]ike many areas of climate change 

science, but unlike most areas of ecology, 

understanding of biosphere-atmosphere 

interactions fundamentally relies on the 

predictions of large, complex models whose 

parameters are too diffi  cult to measure and 

that make predictions at scales far larger than 

we are typically able to make measurements. 

[Emphasis added]

Yet nowhere in any of these papers is a sound 

philosophical case made for articulating the role of 

computational models in basic discovery and the 

growth of scientifi c knowledge, hence precisely our 

Challenge # 0.

Responding to Challenge # 1 rests signifi cantly on 

the way in which the community of environmental 

modelers can likewise respond to Challenge # 0, but 

not entirely so. Some basic scientifi c problems and 

questions, perhaps many, will reside as yet undisclosed 

in the interstices between the disciplines contributing 

to the EOs.

Working at the Interstices

Take, for example, the broad subject area of coastal 

ocean dynamics and ecosystems, one of seven research 

themes and opportunities of strategic importance in 

the Ocean Observatories Initiative (ORION Executive 

Steering Committee, 2005). Suppose our interest is 

in understanding the occurrence of harmful algal 

blooms (HABs) of the Phaeocystis species and their 

many distorting and unwelcome eff ects (Veldhuis and 

Wassmann, 2005). What disparate blocks of knowledge 

might have to be pushed up against each other in full 

pursuit of this interest? What heterogeneous, mono-

disciplinary sub-models might have to be poured in a 

consistent manner into the holds of our metaphorical 

vessel of the model of the multi-disciplinary whole? 

How can the practicalities of this be employed in 

supporting the creativity of both asking novel, basic 

scientifi c questions and of wringing the elegance of a 

more coherent theoretical whole out of the incoherent 

parts?

From a global perspective, and therefore certainly 

at a macroscopic scale, transport of materials and 

organisms (such as larvae) across the coastal ocean 

margin exerts a dominant control over major, global 

chemical cycles, most obviously so at the interface 

between the terrestrial and oceanic realms (ORION 

Executive Steering Committee, 2005). Signifi cant 

material transfers are also occurring, however, across 

the interface between atmosphere and ocean, including 

the invasion of CO
2
; and the resulting acidifi cation may 

interfere with biogenic calcifi cation, possibly associated 

with organisms linked through an ecosystem to the 

Phaeocystis algal species.

At an intermediate scale — let us say, meso-scale — 

one (if not several) blocks of knowledge regarding 

the hydrodynamics of the coastal margin will have to 

be brought together: on stratifi cation, as a function 

of freshwater inputs, including from groundwater 

through the coastal ocean bed; on ocean fronts, and 

specifi c fi laments and jets thereof, whose movement 

and meandering across the margin may be guided 

by specifi c bottom topography; and on regimes of 

sediment erosion, transport, and deposition. Th ese 

factors infl uence the occurrence of hypoxia events 

(another block of knowledge), which in turn infl uence 

marine biogeochemical processes, such as the 

removal of biologically available nitrogen through 

denitrifi cation. Such factors also induce patchworks 

of unique habitats (yet another block of knowledge) 

capable of dominating the structure and behavior 

of these same biogeochemical processes (ORION 

Executive Steering Committee, 2005).

Coming down to a literally microscopic scale, without 

losing sight of entire ecosystems at the meso-scale, still 

other blocks of possibly ill–fi tting knowledge must 

be dove-tailed into the whole: on the physiological, 

behavioral, and morphological characteristics of 

individual species. Understanding polymorphism 

amongst the six currently identifi ed Phaeocystis 

species of algae, manifested as free-living single-cell 

species, as opposed to gelatinous, colonial species, 
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is crucial. For it aff ects variously the effi  ciency of 

cell/colony growth; virus penetration of cells and 

therefore their mortality; escape from ingestion by 

predators; exudation of predator-repellent chemicals; 

and the scavenging of bacteria and viruses from the 

water column, as particulate fragments are generated 

during disintegration of the colonies (Veldhuis and 

Wassmann, 2005).

Alternatively, turning the course of this 

argument landward, as it were, Box 1 examines 

the possible gaps existing at various scales and 

amongst the many constituent disciplines and 

models germane to studies in uncoupling the 

nutrient and water metabolisms of cities.

For problems such as these, do we have a model, or a 

suite of models, capable of addressing the functioning 

of such complex systems spanning so many diff erent 

disciplines and scales and, most importantly, 

illuminating thereby interesting, novel, basic scientifi c 

questions at the interstices amongst these disciplines 

and scales?

As the sceptic would say, “there is nothing new under 

the sun”, of course. Aft er all, Integrated Assessment 

Models (IAMs) have been available for some time 

now (Risbey et al, 1996; Schröter et al, 2005; Letcher 

et al, 2007), as have multi-media (air-water-soil) 

models (Efroymson and Murphy, 2001; Babendreier 

and Castleton, 2005), while Bayesian (or Belief) 

Networks can also be seen as a systematic framework 

for pinning together constituent knowledge bases 

and sub-models of quite eclectic origins (Borsuk 

et al, 2004). All, however, are turned not to the 

purpose of generating new hypotheses, but to that of 

answering questions of policy and decision-making: 

of discriminating reliably between those hazardous 

waste streams that could safely be released to the 

environment and those that could not (Babendreier 

and Castleton, 2005); of the vulnerability of 

supplies of ecosystem services across Europe in the 

face of climate change (Schröter et al, 2005); or of 

determining a Total Maximum Daily Load (TMDL) 

of nitrogen discharges in order to subdue the extent 

of eutrophication in an estuary (Borsuk et al, 2004).

To many readers of this Paper at least one of the gaps 

in the above (and in Box 1) will not seem as such at 

all and will doubtless have been the subject of some 

investigation, possibly with the use of a computational 

model. Th is is not the point. Rather, the question is 

whether and how the growing potential and scope of 

environmental modeling, underpinned by the expected 

advances in environmental cyber-infrastucture and 

sensors, can be used deliberately to arrange and 

manipulate cross-disciplinary knowledge in a way 

that provokes or prompts the kind of basic scientifi c 

questioning that Schellnhuber and colleagues expect of 

the second Copernican revolution — and more readily 

so than would otherwise be the case.

When a model is constructed, certain pieces of the 

primary science bases are presumed known and 

included in explicit mathematical form, to which we 

shall refer as the {presumed known}. Th is implies a 

complement, of that which is acknowledged as not 

known — the {acknowledged unknown} — and 

therefore not included in the model’s structure, except 

typically under the lumped, and largely conceptual, 

stochastic processes customarily referred to as the 

system and/or observation noises. Th is, then, is part 

of the challenge. What methods are available, or are 

conceivable, for systematic probing and exploration 

of the {acknowledged unknown}, in particular, those 

portions of it associated with the interfaces between 

disciplinary sub-models?

Th e conventional view of models as archives for 

passively consolidating the “known” must be 

complemented by the view of models as vehicles for 

actively probing the “unknown”. Th at is exactly what is 

called for in Challenge # 1.

We recognize full well, nevertheless, that the 

occurrence of important insights and the formation 

of profound questions cannot be reduced to formal 

logic alone in any deliberate design and deployment of 

models, since this occurrence is almost always a strong 

function of what we acknowledge as “serendipity”. 

When the procedure of Regionalized Sensitivity 

Analysis (RSA) was fi rst proposed (Young et al, 1978), 

it was described as a computational, model-based 

scheme for hypothesis generation — suggestive indeed 

of things to be sought in the {acknowledged unknown}. 

In practice, it is better understood as a scheme for 

discriminating key from redundant hypotheses, where 

the skill of the analyst resides in carefully assembling 

in the {presumed known} as many such candidate 

hypotheses as may be thought remotely relevant to the 

issues at hand, albeit under gross uncertainty.

Our challenge still stands, therefore, although with 

now an inkling of one possible avenue for developing a 

response to it; yet an avenue capable of fully exploiting 

the future cyber-infrastructure and the VHOMs 
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BOX 1

Uncoupling the Nutrient and Water Metabolisms of Cities

Problems Across The Scales

At one scale (the city) food and water enter the city in separate fl ows; under the modern sewage 
treatment paradigm of the Global North, they exit the city comprehensively mixed and destined for 
the aquatic environment. Those nutrients entrained into the water effl ux should not be headed for 
the aquatic environment. How can this be halted, by what adaptations and re-engineering of the city’s 
water infrastructure? How does mass collective human metabolism infl uence the fl uxes of nutrients 
through the city, including the entrainment of pharmaceutical residues and pathogens, as a function 
of nutritional requirements, dietary preferences, and public health considerations?

At another, larger scale (the watershed) the city and its water infrastructure, constituting Integrated 
Urban Water Management (IUWM), are embedded within schemes of Integrated Water Resources 
Management (IWRM) across the watershed, and the practices of both (IUWM and IWRM) interact — 
for ill, or good — with the provision of the region’s ecological services.

At yet another scale (the globe) 70-80% of Man’s appropriation of the Earth’s freshwater has to do 
with the production of food; vast quantities of water, as much as signifi cant amounts of nutrients, are 
“burned up” in the process. In the global production, transport, trading, and consumption of food-
stuffs, these constituents embodied in the food participate in a global cycling of materials, largely “vir-
tual” in the case of water (Allan, 2003; SIWI-IWMI, 2004), literal in the case of the nutrients. Looked 
at globally, the quality of agricultural soils in food-producing parts of the world is being stressed, if 
not degraded, while eutrophication is occurring in the coastal ecosystems “downstream” of the cities 
in food importing countries (Grote et al, 2005), with possibly wider consequences for harmful algal 
blooms (HABs) and the evolution of marine ecosystems more generally (Jackson et al, 2001).

At still another scale (the local, and the very personal) to what extent would a re-plumbing of house-
holds in the Global North — to accommodate the broad-scale substitution of urine-separating devices 
for current toilet designs — allow us to uncouple the water and nutrient fl uxes in the metabolism of 
a city? Would such a technological “solution” be suffi ciently socially legitimate? And how might we 
judge the sustainability of this infrastructure change over the span of generations?

Interstices and Models

There are signifi cant gaps amongst the disciplines and models that might be assembled to address 
such a “mess” of a problem with its many questions, as we shall see later (Challenge # 11).

First, it is not common to link analyses of the urban water infrastructure of potable water supply 
upstream of the household to those of the wastewater infrastructure downstream thereof, and little 
or no accompanying systematic account is taken of the role of collective human agency within a 
household (such as dietary preferences and health-care status) in connecting the two.
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Second, we do not know how to assess individual items of technology, such as the urine-separating 
device, or even the entire web of technologies comprising water infrastructure, on the basis of their 
roles in the interaction between the city’s metabolism and global material cycles (notably the N cycle) 
— yet we can see this would be hard to achieve without a complex model.

Third and likewise, we do not have any clear, quantitative expression of the relationship between the 
urban water and nutrient metabolisms and the ecosystem services deriving from the
surrounding watershed.

Fourth, but a few pioneering studies have examined the interactions between groundwater and urban 
water infrastructure, let alone the feedbacks between groundwater extraction, water tables, city land 
subsidence, and vulnerability to fl ooding (Howard and Gelo, 2003).

Fifth, and last, we have only recently begun to conceive of the microbial ecosystems of biological 
wastewater treatment as microcosms for studies in generating novel, generic insights into the 
behavior of dynamical systems — such as metabolism, self-repair, self-replication, and their 
relationship with the notion of ecological resilience — and infrastructure design.
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enabled within it. For merely integrating the various 

blocks of knowledge, such as those apparent in Box 

1, or in the example of coastal ocean dynamics and 

ecosystems, is not a trivial technical matter. For 

instance, in developing supporting computational work 

for the scenarios element of the recently completed 

Millennium Ecosystem Assessment (Carpenter and 

Folke, 2006; www.MAweb.org), an inability to link the 

models from the disparate components comprising the 

necessary inter-disciplinary synthesis was indeed an 

insuperable, technical barrier to progress.7 Removing 

this kind of barrier presents us thus with a challenge 

in itself, and one closely bound to innovations in the 

environmental cyber-infrastructure.

7  Schröter et al (2005) confi rm this, albeit indirectly. 
Th eir work amounts essentially to a bundle of climate and 
societal scenarios acting as input forcing functions for a 
collection of more or less complex, but independent, sector 
models.

2.2 Role of Cyber-infrastructure in Addressing 
Global Issues

Th e NSF Blue-ribbon Panel on Cyberinfrastructure 

held out this promise (NSF, 2003):

[A] new age has dawned in scientifi c and 

engineering research, pushed by continuing 

progress in computing, information, and 

communication technology, and pulled 

by the expanding complexity, scope, and 

scale of today’s challenges. Th e capacity 

of this technology has crossed thresholds 

that now make possible a comprehensive 

“cyberinfrastructure” on which to build new 

types of scientifi c and engineering knowledge 

environments and organizations to pursue 

research in new ways and with increased 

effi  ciency.

For our present purposes, the Engineering Research 

Plan for the WATERS Network defi nes a cyber-

infrastructure in the following terms (WATERS, 

2007a):

A cyberenvironment [cyber-infrastructure] 

is an integrated system for automated 

collection, storage, retrieval, and analysis of 

data accessible by multiple parties through 

a Web portal. It includes various tools for 

real-time collaboration with other remotely 

based researchers and provides access to 

the monitoring information collected by 

an observatory’s fi eld facilities, as well as 

historical and other relevant data. Analytical 

(e.g., statistical), modeling, and visualization 

tools needed to conduct engineering 

analyses are provided within the system. An 

operational cyberenvironment also could 

include control and feedback systems for 

decision-making and management.

Seamless integration and consistency of functions 

should be of the essence.

Models and an Environmental Cyber-infrastructure

At the May (2006) Workshop in Tucson, Arizona, a 

substantial amount of time was devoted to assessing 

the role of the cyber-infrastructure in enhancing the 

functions of models, in particular, in the context of the 
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EOs. Inasmuch as a snapshot can be taken of such a 

rapidly evolving fi eld, our conclusions were broadly as 

follows.

First, the cyber-infrastructure would support:

(i) Integration of the heterogeneous data 

bases and data streams, from all manner 

of sensing platforms (satellite, buoy, fl ux 

tower, and so on) and devices (mobile, 

DNA micro-array, and so forth) far better 

than previously, and more completely, 

into a coherent, transparent whole 

comprising (yet to be) standardized 

components.

Nowhere more so are data heterogeneous than in 

Ecology, argue Jones et al (2006). In a refreshingly 

candid survey, they note that: (a) current spreadsheets 

do not provide the tools to promote good data 

management; (b) the alternative of data warehouses 

may well not succeed, since no reward system is in 

place for recognizing contributions made by sharing 

data — indeed, the absence of an appropriate system of 

rewards is “[p]erhaps the most pervasive cultural factor 

stalling access to digital data”; (c) retirement, career 

changes, and death of the original investigator can 

have a dramatic impact on the availability of metadata 

— information used to document and interpret data — 

and therefore the utility of the data themselves; and (d) 

the prevalent model for funding of scientifi c research 

overlooks the need for long-term preservation of data, 

the costs of which data curation are substantial ($10M 

per annum, even in best of circumstances, for the 

National Center for Biotechnology Information). Th eir 

conclusion is thus inevitable (Jones et al, 2006):

It is false economy, and poor scientifi c 

practice, not to ensure that the data are 

present and useful to all users in the future.

It is no surprise that substantial resources are being 

devoted to addressing this widespread concern. Th e 

Consortium of Universities for the Advancement of 

Hydrologic Science, Inc (CUAHSI), supported by 

NSF, has been developing a Hydrologic Information 

System (HIS), presently at the stage where Horsburgh 

et al (2009) have announced their standard method of 

publishing environmental and water resources point 

observations data as providing:

[A] framework in which data of diff erent types 

and from disparate sources can be integrated, 

while overcoming syntactic and semantic 

heterogeneity in the data from each source.

Second, the cyber-infrastructure would likewise enable:

(ii) Integration, more complete and far 

better than before, of what would 

otherwise become heterogeneous sub-

models, with diff ering terminologies 

and units, diff ering spatial, temporal, 

and biogeochemical resolutions, 

diff ering process mechanisms and, more 

fundamentally, diff ering conceptual 

foundations. As our work is drawn on 

by the need and ambition to encapsulate 

ever more of “the expanding complexity, 

scope, and scale of today’s challenges” 

(NSF, 2003) in model assemblies of the 

whole, the challenge of overcoming 

such conceptual heterogeneity must be 

addressed (as already suffi  ciently apparent 

in the preceding Challenge # 1).

Drawn on by policy imperatives in the European Union 

(its Water Framework Directive), the Open Modelling 

Interface and Environment (OpenMI) has the ambition 

of facilitating migration of existing models (and the 

development of future models) to a new standard of 

soft ware. Model inter-operability would be increased 

and accessibility and reusability improved thereby 

(Rizzoli and Argent, 2006). Th e 2008 Catalog of soft ware 

manufacturer Th e DHI Group promotes MIKE 11 

and MIKE SHE as “OpenMI™ Compliant” amongst 

its comprehensive range of products for simulating 

urban, water resources, and marine environments. Th e 

scientifi c visualization of DHI Group’s MIKE Animator, 

quite inadequately sampled in Figure 3, is indicative of 

the immense technical sophistication of such soft ware. 

Drawn on by the same European Directive, but inducing 

innovations at a more basic, scientifi c level, the PIREN-

Seine study (France) broke new ground, as far as we 

can tell, in placing the formerly incompatible sub-

models of the watershed, watershed headwaters, main-

stream channels, estuary, and coastal zone on a single, 

consistent biogeochemical basis (Billen et al, 2007b; Even 

et al, 2007a).

Th ird, an environmental cyber-infrastructure should:

(iii) Enable the two, data (from (i) above) and 

theory (from (ii) above), to be brought to 

each other more smoothly and from any 

source.

64106_NSF_WhitePaper.indb   Sec2:1964106_NSF_WhitePaper.indb   Sec2:19 7/22/2009   1:38:03 PM7/22/2009   1:38:03 PM



20  Grand Challenges of the Future for Environmental Modeling

Th e Challenges

As we shall see later (Challenge # 9), data assimilation 

is to (iii) what semantics and ontologies are to (i), in 

terms of curbing heterogeneity (Jones et al, 2006).8

Last, but emphatically by no means least, the cyber-

infrastructure must:

(iv) Facilitate less disjointed community 

collaboration — in principle, given 

the diff ering “languages” (jargon) 

and cultures of the myriad disciplines 

keying into the EOs — amongst more 

individuals in a more widely shared 

(virtual) workspace.

8 “Semantic integration involves clarifying data content 
in ways that are similar to controlled vocabularies, but us-
ing more powerful formal structures known as ontologies”, 
according to Jones et al (2006), who defi ne “semantics” as 
enabling computers to interact powerfully and appropriately 
using familiar and meaningful concepts for humans, and 
“ontologies” as formal models of knowledge in a particular 
subject area useful in making inferences about data. 

We can see how even the fi ne detail of an integrated 

system for publishing environmental observations data 

(Horsburgh et al, 2009) contributes measurably to this.

Th e potential role of models, as the systematic 

lingua franca of a good deal of inter-disciplinary 

collaboration, is obvious in this last element (iv) of 

the vision. Looking ahead therefore to what will be 

expressed as one of the greatest challenges we face 
(Challenge # 7), we can imagine the archetypal 

Statistician interpreting the data, using the artful 

visualizations of the self-organizing maps of data-

mining, and gift ed with the superbly trained eye for 

spotting the unexpected and uncommon correlation, 

or the intriguing nonlinear anomaly between data and 

model. But s/he is almost certain to be insuffi  ciently 

grounded in the domain knowledge of the Marine 

Ecologist, who can proff er the hypothetical conjectures 

on why the correlation or curious anomaly is 

occurring. How might the two, one on a boat at sea, 

the other in a city offi  ce, tinker with one and the same 

scientifi c visualization of the model’s structure, at the 

same time, on their own respective computer screens?

Image used to advertize capabilities for scientifi c visualization of model outcomes through DHI Group’s MIKE Animator software (reprinted with permission from 
the 2008 DHI Group Catalog).

Figure 3
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same time, on their own respective computer screens?
Serving Science

Such a vision of the role of the environmental cyber-
infrastructure is beyond our reach, for the moment. 
The thrust of current research is towards realizing 
two primary facilities: first, assimilating data into a 
model, because this very process embodies the goal of 
rendering integrated and homogeneous what would 
otherwise be heterogeneous and disjoint (McLaughlin, 
2002; Williams et al, 2005; Lermusiaux et al, 2006a); 
and fore-, hind-, and now-casting with very large 
models in real time, because we have in prospect the 
wherewithal of peta-scale computing so to do.

At bottom, however, such applications accept the 
prior conceptual model structure as given, not to be 
questioned. Our next challenge is therefore this:

Challenge # 2:

What kinds of software platforms within 
the environmental cyber-infrastructure 
will be necessary for supporting extensive, 
heuristic experimentation with a model’s 
structure, i.e., in facilitating experimental 
“rewiring” of its constituent hypotheses 
and their interconnections in the assembly 
of the whole, while the inter-disciplinary 
community of environmental scientists works 
at formulating and resolving core science 
questions in the interstices amongst the 
constituent disciplines?

Given the inexorable expansion in coverage of the 
continua of time, space, and biogeochemistry — to 
include the ever smaller, the ever larger, and more of 
what is in between those expanding boundaries — 
what are the scientific milestones in what can seem 
an otherwise rather mechanistic, somewhat routine 
process of “technology-push”? What, in this same 
vernacular, is the scientific, demand-side pull? For the 
issue is not so much one of merely employing peta-scale 
computing, because it has become readily available, 
but of clarifying how exactly that technical advance 
changes the questions we can ask of science, and hope 
to answer. What kinds of scientific visualization of 
models, not currently met by the likes of Figure 3, 
will facilitate the freedom of endless questioning and 
creative dialog, as we have just imagined between our 
archetypal Statistician and Marine Ecologist?

The automated “computational thinking” (NSF, 2007) 
of the anticipated environmental cyber-infrastructure 
should be to the present Challenge what the “manual” 
thinking of the systems scientist was to the preceding 
Challenge # 1 — in working to spot and craft core, 
basic scientific questions at the interstices amongst the 
discipline-specific sub-blocks of a composite model. 
The one — unerring, systematic (here) — should 
complement, if not provoke more, of the other — the 
serendipitous (there, under Challenge # 1). As called 
for in the current NSF Program Solicitation for new 
research on “Cyber-Enabled Discovery and Innovation 
(CDI)” (NSF, 2007)9:

Ambitious CDI projects in this area [From 
Data to Knowledge] will allow investigators 
to confirm the expected and reveal the 
unexpected in multiple science or engineering 
domains.

[C]omputational thinking ... promises 
paradigm-shifting advances in more than one 
field of science and engineering

For instance, in a recent (2006) internal report from 
CUAHSI entitled High Performance Computing for 
Hydrological Sciences (CUAHSI, 2006), it is apparent 
how attaining the goal of substantially greater 
computational refinement enables a better appreciation 
of some basic questions of science. In this case, 
computational refinement amounted to finer spatial 
grids and smaller time steps for integration of the 
relevant sets of differential equations, within coupled 
groundwater, surface water, land-surface, and meso-
scale atmosphere models. The questions of science 
better then to be addressed were those of how spatially 
distributed feedbacks from the land surface influence 
weather events and the climate system. Preliminary 
results with such models (Chow et al, 2006) indicate 
the sensitivity of convective storm generation and 
precipitation events to soil moisture fields. This in turn 
prompts the more precisely targeted scientific question 
of what might be the quantitative impact of antecedent 
such fields on precipitation.

Advances likewise in ever more refined computational 
realizations of interactions at the ocean-atmosphere 
interface have enabled the question of whether 
climate change is affecting hurricane intensity to 
be accompanied now by the equally hotly debated 

9   With echoes therein of Popper’s three Worlds and 
Challenge # 0.
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a signifi cant role in aff ecting climate (Emanuel, 2005; 

Mooney, 2007).

It remains to be seen, however, what other such basic 

questions of science might be unearthed: fi rst, were 

these works grounded in diff erential-equation models 

to be confronted with the rather diff erent conceptual 

and computational frameworks of (spatial) pattern-

process analyses of landscape ecology (Schröder, 2006; 

hence, the IBMs of Grimm et al, 2005); and second, were 

the demands of cross-scale temporal considerations 

(minutes to decades) to be imposed upon them, as they 

must in the terrestrial biosphere models of Moorcroft  
(2006). Not yet apparent either is the extent to which 

the OpenMI or other soft ware protocols (Rizzoli and 

Argent, 2006) would bridge with ease the heterogeneity 

of these computational frameworks and scales, thus to 

accelerate liberation of the all-important core scientifi c 

questions. 

Other instances can be found of this kind of 

convergence amongst domains of enquiry previously 

largely separated, where the act of synthesis has 

itself been enabled by the inexorable refi nement and 

expansion in computational coverage of the continua 

of time, space, and biogeochemistry. In their study 

of the design and operation of fi sh passage systems 

in the Pacifi c Northwest of the USA, Goodwin et al 
(2006) have brought together: (i) a contemporary 

computational fl uid dynamics (CFD) model to 

generate a hydrodynamic fi eld; (ii) an interpolation 

scheme to convert this fi eld from an Eulerian mesh 

to a Lagrangian framework; within which, (iii) an 

agent-based model of a salmon — a virtual fi sh 

(or Numerical Fish Surrogate; NFS) — determines 

movement of that individual in response to abiotic 

stimuli in its computed environment, such as 

water motions and physical barriers (a biological 

guidance structure, a trash-boom, and so on).

Several points are salient about this work. First, it was 

the culmination of an idea fi rst proposed nearly two 

decades previously. Second, it benefi tted no doubt 

from advances in sensor technology over that period, 

specifi cally in respect of acoustic-tagging of fi sh for 

observing their navigation through a body of water. 

Th ird, suggestive of what has been called the scientifi c 

demand-pull above, it looks towards a future in which, 

for the purposes of “decoding” patterns of movement of 

individual salmon, as they put it (Goodwin et al, 2006):

We believe new emerging methods such as 

large eddy simulation (LES) CFD modeling 

may be needed to more accurately resolve eddy 

formation and turbulence production at spatio-

temporal scales important to fi sh behavior.

“Decoding” is an opaque, if not tentative, word for 

using a model at the interstices amongst disciplines in 

order to shape and address questions of basic, scientifi c 

discovery. Much less hesitant is the work of Ruardij et 

al (2005), as we now relate.

Models and Hypotheses at the Interstices: the Case of 

Phaeocystis Revisited

What essentially causes the alga Phaeocystis to prosper 

as a “harmful algal bloom” in marine ecosystems? 

Amidst all the physical, chemical, and biological factors 

that could be relevant to answering this practically 

important question, as already recounted in respect 

of Challenge # 1 (Chapter 2.1), much may pivot on 

understanding the occurrence of polymorphism 

amongst the six currently identifi ed Phaeocystis species 
(Veldhuis and Wassmann, 2005).

On the one hand, from the context of examining the 

system in situ, derives a fairly complex model: an 

assembly of candidate, constituent hypotheses pinned 

together as a composite conjecture on what should 

happen as a whole in the uncontrolled “mess” of the 

fi eld (Ruardij et al, 2005). Sensitivity analyses of this 

model, designed to provoke the discovery of “new 

science”, corroborate  in part one elemental hypothesis 

— while discrediting an alternative — about virus 

penetration of a colony-forming species of Phaeocystis. 

Hence follows either the prosperity of the colonial form 

or its demise (Ruardij et al, 2005). Th is is what they say 

of the outcomes of their “Hypothesis testing by [model] 

sensitivity analysis” (Ruardij et al, 2005):

[W]e indicated that a reduced encounter rate 

between virus particles and colony spheres is 

adequate to explain the low rate of infection 

of embedded colonial cells. Th e suggested 

impermeable skin of the colonies is an 

unnecessary Deus ex machina for protection 

against virus. [emphasis added]

On the other hand, from the context of investigations 

in vitro, under the exquisitely controlled conditions 

of the laboratory, wherein careful scrutiny of a single, 

elementary hypothesis can proceed unimpeded, the 

evidence is that polymorphism can occur at diff erent 

times in one and the same single species of the prey 
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alga, namely, Phaeocystis globosa. It arises through 

(defensive) adaptation triggered by diff ering chemical 

signals in the proximity of diff ering forms of predator, 

each with substantially diff erent eating habits (Long et 

al, 2007).

Taken side by side, the chemical signaling hypothesis 

has fallen through an inter-disciplinary gap in the 

composite conjecture of the model, whose study pointed 

instead towards further exploration of a viral-infection 

hypothesis. Th e provisional validity of the chemical-

cue hypothesis, however, built on the foundations of 

artifi cially isolated laboratory investigations, demands 

exhaustive further testing — through the model — in 

the quite diff erent setting of the approximated mess of 

multiple, interacting, ongoing hypothetical experiments 

that is the behavior of a fi eld system in situ.

With the prospect of the automated, computational 

thinking of a cyber-infrastructure, to accompany 

the thinking we shall always be doing for ourselves, 

our essential challenge is this. How might alternative 

designs of a model, organized and deployed within 

the environmental cyber-infrastructure, enhance the 

speed and effi  ciency of both pinpointing the potential 

questions provoking core scientifi c discovery and 

covering the gaps through which they might evade 

detection — and all as a complement of the much 

more familiar analyses of laboratory science?

What other such milestones, across the fi elds of the 

EOs, ought to be attainable 5-10 years’ hence, as grand 

scientifi c challenges associated expressly and uniquely 

distinctively with modeling?

2.3 Universal Science Issues and Process 
Mechanisms

Th e mechanics of fl uid motion or the kinetics of 

microbial metabolism and growth do not recognize 

the borders we place around our disciplines. Such 

issues of scientifi c enquiry and their attaching 

process mechanisms are universal, in the sense that 

they present themselves in largely identical form, in 

developing and constructing models, within each of 

the domains of the three Environmental Observatories 
(EOs). Th ese matters could be fully addressed within 

the confi nes of a single EO.

But how, we must ask, might their study be diminished 

in the absence of collaboration across the EOs? Or, put 

the other way around, what might be the added value 

of coordinating enquiry into these subjects, without 

restriction to any single EO, around the focus of 

models, with the intent of (again) serving the purpose 

of basic, curiosity-driven scientifi c discovery? And 

which subjects, in particular, might be those where 

models fulfi l a role not substitutable by other forms of 

enquiry, which role itself is likely to be substantially 

enhanced by the advent of an impressively better 

environmental cyber-infrastructure?

A “Tyranny of Scales”

While Challenge # 1 dealt with cultivating research 

at the interstices amongst a variety of disciplines, 

equally signifi cant issues of handling computational 

representation at a variety of scales were hardly ever 

out of focus — witness the case of Phaeocystis and 

the challenge of “Uncoupling the Nutrient and Water 

Metabolisms of Cities” set out in Box 1 of Chapter 2.1. 

Th ese matters of scale surfaced just as palpably in the 

foregoing discussion of Challenge # 2 (Chapter 2.2); 

and they will here be brought to occupy center-stage.

Hydrologists have long been familiar with the problem 

of how to accommodate issues of scale in their models 
(Blöschl and Sivapalan, 1995). And scale itself has 

a number of facets to it, ranging from dependence 

on spatial scale of the mechanisms of contaminant 

dispersion in a moving fl uid (Pang and Hunt, 2003), 

to upscaling and downscaling of the fl uxes of water, 

heat, and carbon (C) through the soil-plant-atmosphere 

continuum (Anderson et al, 2003), and on up to the 

perspective of Earth Systems Analysis in Moorcroft  
(2006).
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Challenge # 3:

Is there a unifying and uniquely distinctive 

approach to the use of models in exploring 

issues of scale, and cross-scale interactions, 

along each of the three dimensions of (i) time, 

(ii) space, and (iii) biogeochemistry, where 

this last manifests itself across scales from 

molecular biology up to all the chemical 

and biological species comprising whole 

ecosystems?

We are drawn on by the widening scope and increasing 

depths of our needs and ambitions to comprehend the 

world about us, seeking especially for this understand-

ing to span vastly diff erent scales of enquiry and analy-

sis. Where the Blue-ribbon Panel on Cyberinfrastruc-

ture (NSF, 2003) saw in this the enormous promise of 

our conducting science and engineering studies in quite 

novel ways, so the Blue-ribbon Committee on Simula-

tion-based Engineering Science feared the “tyranny of 

scales” (NSF, 2006). Scale is identifi ed as the fi rst of its 

six core issues, where “core” signals an issue common to 

the “challenges, barriers, and requirements for research 

breakthroughs” of all fi ve of the societal benefi ts ex-

pected to fl ow from an investment by NSF in SBES.10

So great indeed appears the challenge that the Report 

talks in headline terms of “Th e Tyranny of Scales: Th e 

Challenge of Multiscale Modeling and Simulation”. It 

proceeds to observe that (NSF, 2006):

Virtually all simulation methods known at 

the beginning of the twenty-fi rst century were 

valid only for limited ranges of spatial and 

temporal scales. Th ose conventional methods, 

however, cannot cope with physical phenomena 

operating across large ranges of scale — 12 

orders of magnitude in time scales, such as in 

the modeling of protein folding, or 10 orders 

of magnitude in spatial scales, such as in the 

design of advanced materials. At those ranges, 

the power of the tyranny of scales renders 

useless virtually all conventional methods. 

Confounding matters further, the principal 

physics governing events oft en changes with 

scale, so that the models themselves must 

change in structure as the ramifi cations of 

events pass from one scale to another.

10  Th ese being in medicine, homeland security, energy 
and the environment, materials, and industrial and defense 
applications.

It is in this sense that hydrologists acknowledge that 

the mathematical structure of the description of the 

mechanisms of contaminant dispersion changes 

signifi cantly with spatial scale.

Th e language of the NSF Report is robust, if not fl orid. 

It leaves us in no doubt:

In many ways, all that we know about the 

physical universe and about the design and 

functioning of engineering systems has been 

partitioned according to categories of scale. 

... Today, we are attempting technological 

advances that cannot tolerate any view of 

nature that partitions phenomena into neat 

categories of scale. ... Th e tyranny of scales 

will not be defeated simply by building bigger 

and faster computers. Instead, we will have to 

revamp the fundamental ways we conceive of 

scientifi c and engineering methodologies, long 

the mainstays of human progress.

Not surprisingly, the Report fi nds on this topic that 
(NSF, 2006):

Formidable obstacles remain in linking 

highly disparate length and time scales and in 

bringing together the disciplines involved in 

researching simulation methods. Th ese issues 

are common to many SBES applications. 

Fundamental discoveries will be needed to 

surmount these obstacles.

We shall see more than enough evidence later of such 

“highly disparate length and time scales” in the science 

and engineering of the EOs.

Cross-scale Interactions: Space, Time, Process-

Mechanism, and Pattern

Ecologists well appreciate the challenges of addressing 

cross-scale interactions, expressed succinctly here by 

Levin (2000) in a paper on “Multiple Scales and the 

Maintenance of Biodiversity”:

Pattern and diversity arise through positive 

feedbacks on short time scales and local 

spatial scales and are stabilized by negative 

feedbacks on longer time scales and broader 

spatial scales.

64106_NSF_WhitePaper.indb   Sec2:2464106_NSF_WhitePaper.indb   Sec2:24 7/22/2009   1:38:05 PM7/22/2009   1:38:05 PM



Chapter 2: Science  25

Th e Challenges

Important dynamical properties of ecosystems, 

specifi cally resilience and regime changes, are a 

function of the subtle — and, as yet, not well elaborated 

— interplay amongst system state variables with very 

diff erent characteristic time-constants (Carpenter 

and Folke, 2006). Sudden shift s in regime, signaled by 

high-amplitude, fast, transient responses in some state 

variables, can be triggered by almost imperceptible 

changes over time in other (slowly changing) state 

variables. For example (Carpenter and Folke, 2006):

By operating at diff erent spatial and 

temporal scales, competition among grazers 

is minimized and the robustness over a 

wider range of environmental conditions is 

enhanced.

Put another way around, turning the balance in our 

thinking somewhat away from variations of process 

mechanisms along the continuum of temporal scales 

towards variations along the spatial continuum and the 

emergence of patterns, we have (Grimm et al, 2005):

Ideally, the patterns used to design a model 

occur at diff erent spatial and temporal scales 

and diff erent hierarchical levels, because 

the key to understanding complex systems 

oft en lies in understanding how processes 

on diff erent scales and hierarchical levels are 

bound to each other.

Or yet again, there is this, more obviously indicative 

of reining in the computational tyranny of scales 
(Goodwin et al, 2006):

Th e resulting ELAM [Eulerian-Lagrangian-

agent model] framework is well suited 

for describing large-scale patterns in 

hydrodynamics and water quality as well 

as much smaller scales at which individual 

fi sh make movement decisions. Th is ability 

of ELAM models to simultaneously handle 

dynamics at multiple scales allows them to 

realistically represent fi sh movements within 

aquatic systems.

In systems of environmental engineering and the built 

infrastructure, where it might well be highly desirable 

to see notions of ecological resilience incorporated 

into the design of such infrastructures, it is now 

readily apparent that understanding the occurrence 

of faults and failures, i.e., fast transient excursions 

from “desired” performance (and their management), 

is unlikely to proceed far without conceiving of  the 

system’s behavior in terms of (spectral) frequency 

distributions and responses — a framework in which 

all temporal scales of behavior are succinctly embraced 
(Beck, 2005a).11 Cross-scale interaction would there 

be expressed as a slow, incremental accumulation of 

technologies over the decades and centuries, “locking 

in” to a macroscopic form (or pattern) of infrastructure 

increasingly vulnerable to fast, transient losses of 

desired functions over hours and minutes; hence today 

the challenges of Box 1 in Chapter 2.1.

In short, and to paraphrase a part of Levin’s (2000) 

synthesis, the essential questions of cross-scale 

interactions — manifest inseparably across the space 

and time continua — are these: what processes-

mechanisms produce pattern in space-time; and, more 

pragmatically, what cross-scale interactions amongst a 

host of processes-mechanisms produce biodiversity? If 

we were to acquire  understanding in answering these 

questions, we would have insights into the stewardship 

of biodiversity.

What Challenge # 3 calls for, then, are responses to this 

kind of question: will our overcoming the “tyranny of 

scales” — in modeling and computational terms, that is 

— aff ord us the possibility of coming up with new, core 

scientifi c insights into Levin’s synthesis of the “problem 

of multiple scales”, and uniquely and more swift ly so 

than without the development of models.

11  But see also Kirchner et al (2004) in a related sense.
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2.4 Universal Science Issues of a Biological 
Nature

In the abstracted setting of Figure 1, drawn for the 

purposes of gauging advances in our capacity for 

observing the environment, the third dimension of 

biogeochemistry appears on an equal, conceptual 

footing with those of space and time. Th is obliged 

us to think there in terms of sampling, sensors, 

and instrumentation ranging from very small 

biogeochemical targets (dissolved chemical solutes) to 

the very large (whales), and to conceive of the intensity 

of consistent sampling in space-time of the species/

individuals within that (bounded) biogeochemical 

range. Our discussion of scale in the foregoing 

(Challenge # 3) articulates well some of the issues in 

employing models in addressing, for example, cross-

scale interactions amongst species/individuals on the 

space-time plane (of Figure 1). By comparison, it leaves 

unattended the challenges of cross-scale interactions 

along the biogeochemical dimension. For these, in 

more familiar, less abstract terms, are nothing more 

than the common subjects of enquiry in Molecular 

Biology, Ecology, the Biosphere, and Earth System 

Science.

Bringing together these disciplines of such vastly 

diff erent space-time scales into very close proximity 

— literally, within the span of a single breath, if the 

relevant part of the foregoing sentence were to be 

spoken aloud — motivates our next challenge:

Challenge # 4:

What breakthroughs are needed in order 

to develop a more eff ective and complete 

paradigm of modeling biological processes — 

common to the ocean sciences as much as to 

terrestrial ecology or biological wastewater 

treatment — across all scales: from molecular 

biology to whole ecosystems, and including 

mimicking of the intelligence and metabolism 

of individuals in a population, their 

movement through an environment, and 

their interactions with other individuals, as a 

function of that intelligence and metabolism?

We live in a “biological age”, in which appeal to the 

human organism and to the biological attributes 

of evolved nature as the metaphor for the epitome 

of good design has come to stand alongside the 

clockwork mechanism of a former century. All of the 

“Recommended Immediate Research Investments” 

of the NRC’s 2001 Report on the Grand Challenges of 

Environmental Sciences (NRC, 2001) relate to ecology: 

from biological diversity and ecosystem functioning, 

through infectious disease and the environment, to 

ecosystem functioning and ecosystem services in 

respect of land-use dynamics, and on even to the need 

for hydrologic forecasting to include considerations of 

the ecological consequences of hydrologic events and 

behavior. Th e Report calls for, inter alia (NRC, 2001):

New techniques and capacity for nonlinear 

dynamic modeling ... that integrate 

information from the genome to the 

ecosystem

and

New methods developed to forecast blooms 

of toxic algae, incorporating both remote and 

on-site monitoring of population dynamics 

and toxin production.

In response, and as evidence of another kind — of the 

current hegemony of matters biological — we fi nd this 

(Grimm et al, 2005):

Ecology, in the past 30 years, has produced 

as many individual-based models as all other 

disciplines together have produced agent-

based models ...

Frontiers Across the Disciplinary Domains of the 

Environmental Observatories

Let us put aside considerations of time and space, 

therefore, to focus on interactions and integration 

across scales along the continuum of biogeochemistry 

(as we are here using that expression), thus to enquire: 

in what state do we fi nd the modeling of environmental 

systems and the biota therein, as the platform on which 

then to begin to construct illustrative responses to 

Challenge # 4?

Th e majority of such models, from the microbial 

ecosystems of biological wastewater treatment (Henze 

et al, 1999) to ocean ecosystems (for example, Baretta 

et al, 1995; Woods, 2005; Dippner, 2006;), rarely, if 

ever, ascend further up the (aquatic) foodweb than 

some generic, predatory fi sh “aggregate”, nor descend 

further than varieties of mutations of some species 

within phytoplankton, at the very base of the living 

part of the foodweb, or their infection by a “virus” 
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state variable (Ruardij et al, 2005). Exceptions to 

this are the policy-oriented multi-media models 

underpinning assessments of human and ecological 

risks from exposure to hazardous substances, whose 

computations must necessarily reach into eff ects on 

a host of organisms, such as earthworms, bald eagles, 

large-mouth bass, and white-tailed deer, amongst 

others (Efroymson and Murphy, 2001), and, of course, 

humans, who merit discrimination amongst fi ve age 

groups (Babendreier and Castleton, 2005).

Scanning more broadly the frontiers of contemporary 

research across the various domains of aquatic and 

terrestrial ecosystems, we fi nd the boundaries of 

the lowermost levels to which the biogeochemical 

continuum has been resolved in computational models 

described by the following salients:

(i) an account of the penetration of a 

phytoplankton cell by a virus and 

subsequent lysis of the cell with the release 

of more viruses (Ruardij et al, 2005);

(ii) recourse to appreciating the manner in 

which a fi sh detects accelerations and 

gravitation through the otolith of its 

inner ear, in order to account for how, 

through a computational, game-theoretic 

approximation, various data streams 

are processed by that fi sh as it then 

determines its next move (Goodwin et al, 

2006);

(iii) similarly, an appreciation of the 

neurobiology of the brain, thus the 

locus of spatial memory in a network 

of hippocampus place cells, in order 

to simulate the migration of elk, as 

boundedly rational agents (Bennett and 

Tang, 2006); and, more generally

(iv) making an individual animal’s strategy for 

foraging through its environment depend 

upon a state variable quantifying that 

individual’s energy reserves, where such 

individuals make choices over time “to 

maximize their probability of surviving 

to, and having energy reserves for, future 

reproduction” (Railsback, 2001).

Marked out thus, we can observe how these frontiers of 

environmental modeling have yet to make in-roads into 

the simulation of neural control of animal locomotion, 

such as a lamprey (Ijspeert and Kodjabachian, 1999) or 

salamander (Ijspeert, 2001).

Neither, as far as we are aware, has the coverage of any 

environmental model yet been refi ned down to the 

(very) small scales of the fi elds of computational systems 

biology and computational toxicology, which account 

for the impacts of chemicals — for good or ill — on the 

biological macro-molecules and signaling networks 

within an individual cell, within a tissue, within an 

organ, within an organism (Andersen et al, 2005).

For example, Figure 4 (from Th e MathWorks News 

& Notes, June, 2007) is indicative of what we might 

fi nd in those fi elds. It could easily be mistaken for 

a representation of the interactions amongst the 

multiple biogeochemical species in a model of a marine 

ecosystem, cast well above the scale of an individual 

organism. Th e “sampling span” of the biogeochemical 

continuum in even the WPB virtual marine ecosystem 

of Woods (2005), with its underlying ambition of 

placing elucidation of the laws of Biology on the same 

footing as those as of Chemistry and Physics, does 

not begin to approach the intensity and refi nement of 

Figure 4. For all the branches and nodes of Figure 4 

would not collectively rise to the signifi cance of just 

a single state variable in the WPB model (Woods, 

2005). Th e entirety of their eff ect would have to be 

relegated to a “parameterized”, probably invariant, 

model coeffi  cient. Figure 4, if not complex enough in its 

own microscopic context, is described in a matter-of-

fact manner as merely a “small section of a biological 

system”, albeit a part of “the world’s most complex 

dynamic systems” (as trumpeted on the cover for that 

issue of Th e MathWorks News & Notes).

Elsewhere, one or two isolated studies make the great 

intellectual and computational leap across very widely 

separated scales: from global climate to the genomes 

of host plants and their pathogens, at least in principle 

(and seemingly in response to the NRC’s Report on 

Grand Challenges in Environmental Sciences; Garrett 

et al, 2006); and from particle-tracking across the 

Caribbean Sea using an oceanographic model, to 

prediction of the genetic patterns resulting from long-

distance dispersal of larvae from populations of the 

staghorn coral (Galindo et al, 2006).

No study with an environmental model, however, has 

yet availed itself of any interim outcomes of the Human 

Physiome Project, whose ambition is to generate a 

model of the human body, from the genome upwards 
(Hunter and Borg, 2003), across events spanning from 
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10-6 to 10+9 seconds, disparate enough in the terms of 

the “tyranny of scales” referred to in the NSF Report on 

Simulation-Based Engineering Science (NSF, 2006).

One wonders, then, how long it will be before these 

burgeoning forms of computational technology-push 

are incorporated more fully into the mainstream of 

environmental models. More importantly, however, we 

should wonder to what purpose of what core scientifi c 

demand-pull are they to be put, and contingent upon 

what innovations in sensor technologies across the 

EOs (NSF, 2005)? What manner of data, we should 

ask, would have to be acquired by the Observatories 

to evaluate and revise a model as complex as that of 

Figure 4 (a question to be left  to Challenge # 7)?

On the Th reshold of a Breakthrough?

What unites the disciplines contributing to the 

EOs — the Ocean Sciences, Ecology, Environmental 

Engineering and Hydrology — is their shared enquiry 

into the nature of the biogeochemistry in their 

respective domains, in particular, issues towards the 

biological and organismal end of that continuum. 

Th e distinction of Challenge # 4, and therefore its 

diff erentiation from the foregoing Challenge # 3, 

is its call to go beyond the historical use of crude, 

lumpish “biomass” as the epitome of the state of a 

population of organisms. Th e “individual” is instead of 

growing importance: its metabolism, at various more 

refi ned scales of representation; its motion through 

a geochemical space; and its interactions with other 

biological individuals, both alike and diff erent from 

itself.

Th at growing importance will be seen to permeate 

many of the subsequent challenges of this White Paper, 

not least that which follows (Challenge # 5). Some 

of these are revealed in the sweep of the following 

sequence of indicative challenges, scaling up from 

the smallest of cellular details to an earth systems 

perspective and then scaling back down to behavior 

within the cell.

From the Human Physiome project (Hunter and Borg, 

2003), therefore,

Figure 4

A model of a “small section of a biological system”, albeit a part of the “world’s most complex dynamic systems”, from the cover of The MathWorks News & Notes, 
June, 2007.
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through applications of the mathematical 

theory of adaptive dynamics in respect of 

understanding speciation and evolution 
(Dieckmann and Metz, 2006);

traveling over the regional-scale 

biogeochemistry of the Seine-Paris watershed 

(Billen et al, 2007a);

on up to Moorcroft ’s (2006) question of “How 

close are we to a predictive science of the 

biosphere?”;

and then from within that perspective 

of Earth Systems Science, across to the 

Millennium Ecosystem Assessment 
(Carpenter and Folke, 2006);

Kremen’s (2005) tabulation of the associated 

(global) ecosystem services;

in which she calls expressly for the design 

of new such services, all the way back down 

at the scale of the (engineered) microbial 

ecosystems of wastewater treatment and the 

work of Graham and Smith (2004);

who, in turn, call expressly upon the 

development and application of models for 

such a purpose (Saikaly and Oerther, 2004);

which models have long stood on the verge of 

characterizing the state of the system below 

the level of the individual (generic) cell of 

a given species, which, as we know well, is 

already being achieved elsewhere (outside 

the disciplines of the EOs), in models of the 

metabolic maps and systems of enzyme-

catalyzed reactions within bacterial cells 

(Alvarez-Vasquez et al, 2005; Voit et al, 2006);

we fi nd — from across all these particular lines of 

enquiry, spanning such a huge range of scales — a 

tumultuous ferment of inter-related ideas. And for 

the moment, and more so than in the common thread 

of fl uid mechanics running through the EOs, this 

intellectual ferment conveys hints of a nonlinear 

dislocation in problem-solving, somewhat diff erent 

from the “linearity” of expecting that our models will 

continue to cover more things, in more detail.

From enquiry with the global-scale models of Earth 

Systems Analysis (Schellnhuber, 1999; Schellnhuber et 

al, 2005), based on sets of diff erential-equations, to the 

local-scale of individual-based models (IBMs) of fi sh 

and elk (Grimm et al, 2005; Schweitzer (2003)), to the 

NSF’s Blue Ribbon Committee on Simulation-Based 

Engineering Science (NSF, 2006) and its CDI Program 
(NSF, 2007), the strong suggestion is of change being 

afoot — something universal — in the way we engage 

the development and application of models in scientifi c 

investigation.
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2.5 Applied Mathematics and Generic, 
Dynamical Systems Properties

Th ree decades on from the seminal publications of 

Holling (1978) and Casti (1979) on applications of the 

mathematical theory of catastrophe; two decades on 

from Sir James Lighthill’s apology for the predominant 

determinism of applied mathematics having misled 

the public, in the face of the growing appreciation 

of mathematically chaotic behavior in systems 

(Lighthill, 1986); and a decade on from the emergence 

and diff usion of complexity theory into the study of 

environmental systems (for example, Levin, 1998), what 

today is the legacy of these theoretical developments?

It is, we submit, primarily the dynamical feature of 

resilience in the behavior of systems, in particular, 

ecosystems. Th e course of its development is signaled 

through the benchmarks of Holling (1973, 1986), up to 

the milestone of Peterson et al (1998), on “Ecological 

Resilience, Biodiversity, and Scale”. Its extension to 

“systems” more generally is expressed in Gunderson 

and Holling (2002). Its further codifi cation, with 

corroborating empirical evidence is reported in Folke 

et al (2004). And some of its other manifestations 

are encapsulated in what we have already quoted 

from Levin’s (2000) work on “Multiple Scales and 

the Maintenance of Biodiversity” (in Chapter 2.3, in 

response to Challenge # 3).

Both Holling and Levin appreciate full well the benefi ts 

of “systems thinking” and models, as the means to 

cut across disciplines in the process of intellectual 

distillation and synthesis. Here is what Levin has to say 

of this, in the context of discussing self-organization in 

ecological systems (Levin, 2005):

It is a common exercise in evolutionary theory 

to posit assumptions about interactions, 

and then to use the general approaches of 

dynamical systems theory to explore what the 

consequences of those assumptions would be 

were they valid.

And here, writing on the role of game theory in 

identifying properties of the dynamic behavior of social 

systems, he gives succinct expression to the following 

principle (Levin, 2006):

Build models of the dynamics of systems given 

particular behavioral rules, and then explore 

the adaptive dynamics by allowing mutations 

and introductions of rare novel behaviors.

Th ese are modes of scientifi c enquiry pivoting on 

hypothetical experimentation with computational 

models and directed towards extraction of the essence 

of an insight into a generic, dynamical systems property. 

Th ey are also modes of enquiry redolent of the 

discussion of Popper’s three Worlds under our over-

arching Challenge # 0 (Chapter 1.1).

From all the immensely rich complexity of dynamic 

behavior we fi nd about us, we seek to discern and 

then extract from study in one domain (Ecology, say) 

an essential insight about a fundamental attribute 

of that behavior, such as ecological resilience, and 

transfer it to the study of some quite other domain 

— and with handsome rewards. While there has 

been, and will continue to be, great benefi cial scope 

for transferring the ideas of resilience from one 

domain to another, we ask: is the time now ripe for 

something more; something creatively diff erent from 

that earlier extract of essential insight from Ecology; 

time for something novel to emerge from studies 

in a domain quite other than Ecology; and how, in 

particular, can environmental models and the EOs 

contribute to extraction of that novelty, if at all? For 

our concern must be with how the particular subject of 

environmental modeling might contribute in the future 

to advancing the general implications and insights of 

dynamical systems theory.

Th ere is considerable merit, then, in seeking 

deliberately to push the responses to the foregoing 

Challenges # 3 and # 4 towards the goal of our next 

challenge, thus to communicate into yet broader 

domains the generic, scientifi c and mathematical 

insights deriving from the specifi cs of the 

Environmental Science of the EOs.

Challenge # 5:

Building on the shoulders of the various 

mathematical theories of catastrophe, chaos, 

and complexity — but with the ambition 

to go beyond these — what new insights 

into the generic and fundamental dynamic 

properties of the behavior of systems can be 

obtained from the deliberately orchestrated 

in situ observation of the behavior of many 

specifi c environmental systems and the 

modeling thereof? In particular, how can 

the rich experience of elucidating these 

generic features from studies of whole 

ecosystems, indeed social-ecological systems, 

be productively interfaced with exploration 
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of the novel properties of dynamical 

systems behavior yet to be discovered in 

the study of cellular metabolism, self-

repair, and self-replication? How can 

coordination of relevant research across 

all of the Environmental Observatories 

uniquely accelerate such development? 

Looking towards Challenge # 12, how can 

the community of model-builders in the 

Environmental Sciences best be organized so 

as to benefi t as much as possible from novel 

developments in modeling in general, as they 

arise in, for example, the quite disparate 

disciplines of the biomedical sciences, 

social sciences, cognitive sciences, artifi cial 

intelligence, and artifi cial life?

Th e challenge is in large part that of drawing 

communities productively together.

Cross-fertilization: From Environmental to 

Biomedical Science

At a conceptual level, and in the archetypal mold 

of systems thinking — wherein generic insights 

into problem-solution couples from one fi eld can be 

transferred to a second fi eld whose problems lack 

solutions — we should be keenly interested in aligning 

the potential insights into the dynamical properties 

of metabolism-repair-replication within a biological 

cell (at the micro-scale) with those of resilience, 

at the macro-scale of whole ecosystems (Peterson 

et al, 1998). Aft er all, resilience is about the self-

organized maintenance of function in the presence 

of disturbance, even high-amplitude disturbance, 

just as much as is self-repair in a cell. Alternatively, 

such eliding of metaphors from biology and ecology 

can be driven in rather diff erent directions, across to 

“cities of resilience”, as a blueprint for urban planning, 

notably in the context of one of NSF’s urban-centered 
(Baltimore, Maryland) Long-Term Ecological Research 
(LTER) projects (Pickett et al, 2004).

We, in Environmental Science, have learned much 

from the study of ecological systems. Now, it might 

be said, the opportunity is to learn from studies in 

Biomedical Science. For it is in that domain where 

the functions of metabolism, repair, replication, and 

so forth actually operate and are, therefore, most 

naturally cast for closer study — study targeted, that is, 

at discerning (and extracting) key, generic properties of 

dynamical systems behavior.

What theoretical advance might eventually be expressed 

from this muddling of ecology, cellular biology, and 

cities? Consider this, then. Th e seminal notion of 

ecological resilience has been elaborated further as 

entailing the following (from Peterson et al, 1998):

... [E]cological resilience is generated by 

diverse, but overlapping, function within a 

scale and by apparently redundant species that 

operate at diff erent scales, thereby reinforcing 

function across scales.

Th e combination of a diversity of ecological 

function at specifi c scales and the replication 

of function across a diversity of scales produces 

resilient ecological function.

What principles for re-designing the dynamic 

performance of a city’s water infrastructure could 

we derive from these, through merely substituting 

the word “species” by “unit process technology”?12  

Furthermore, let us recall the multiplicity of “scales” 

apparent in the illustration of “Uncoupling the 

Nutrient and Water Metabolisms of Cities” in Box 1 in 

Chapter 2.1. Mixing now our domain metaphors (from 

Ecology and Biomedical Science): how could any such 

principles of design be employed to compensate for 

the ills of the city’s metabolism, including in respect of 

subliminal (self-organized) damage-limitation and the 

initiation of self-repair in the face of disturbance and 

threat (Beck, 2005a)?

Cross-fertilization: From Environmental to

Social Science

To reiterate, many of the insights we have acquired 

over the past 30-40 years about the dynamic behavior 

of systems, in general, have been insights about the 

behavior of ecological systems, in particular. Such 

growth in knowledge, however, has been drawn 

largely from the perspective of populations of species 

(phytoplankton, zooplankton, budworms) viewed 

broadly and crudely as “biomasses”. Th e behavior 

of individual organisms within any biomass was 

customarily not singled out for simulation: neither 

in respect of that individual navigating through its 

12 In asking this question, we acknowledge both the 
essential diff erences between “engineering resilience” and 
“ecological resilience” (as discussed in Holling, 1996) and the 
fact that the latter has itself yet to be incorporated into the 
design of these technological systems of water infrastructure 
(Beck, 2005a).
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environment, while negotiating with other individuals 

(in its, or another, biomass); nor in respect of the 

dynamically changing state of an individual, either in 

terms of its metabolism (at a sub-cellular level) or its 

intelligence and perception of its surroundings.

In short, the frontier stands now at the desire and 

need to understand and simulate the sentient 

individual organism within its ecosystem, i.e., its 

environment containing individuals from its own 

and other species. Th e diff erence is subtle, but highly 

signifi cant. Th e complement of driving the insights 

of resilience into the more microscopic details 

below the crudeness of simple biomass is that of 

learning from peering outwards and upwards to the 

larger society in which that biomass participates. 

Whereas opportunity lies in the study of problems 

in biomedical systems, so too does it lie in tapping 

into the domain of modeling in the Social Sciences.

Steeped in the conceptual framework of resilience, 

Hawes and Reed (2006) are embarking on seizing 

that opportunity, with their ambitious agenda for the 

computational study of that dynamical systems property, 

notably in agricultural and terrestrial ecosystems:

Th ough there are many models of system 

change and resilience in ecology, and many 

applications of computational techniques to 

ecological systems, there are few that unite the 

two disciplines, placing ecological interactions 

at the heart of new computational algorithms.

Th e project for which this work forms a part 

aims to take ecological approaches to system 

function, and individual-based modelling in 

particular, as a starting point for development 

of a massively scaled multi-agent system that 

uses inter-agent communication to model the 

fl ow of energy through the system.

Th e signifi cance of what we here would call the 

imminent environmental cyber-infrastructure has not 

escaped their notice (Hawes and Reed, 2006):

Th e system implementation and resilience 

analysis protocol will fi rst be validated by 

comparison with existing ecological data, 

before then being applied to new problems of 

larger, more complex ecosystems, and thence 

to similar problems of large scale distributed 

and Grid computing. In this way, we aim 

to develop a practical theory of resilience 

which can be reused in the design of artifi cial 

complex systems in eScience and e-commerce 

domains.

It is but a short step from agency in these terrestrial and 

agricultural systems of Hawes and Reed (2006) to the 

metaphor of an “animal grazing in its pasture”, off ered 

by Rees and Wackernagel (1996) for conceiving of a 

city’s ecological footprint. With the connection to the 

city thus established, a further small step will take us to 

transcribing the notion of the “sentient organism in the 

ecosystem” to that of the “{city and its infrastructure} 

in the {watershed}”. Paris, given the accumulating 

restoration of the past several decades (Billen et al, 

2007a), could well be conceived of as the “bull” in the 

“china shop” of the Seine watershed — a metaphor 

provoking yet further steps towards conceptions of what 

cities could become (Crutzen et al, 2007). 

Models, we already know, have been developed for 

simulating how elk and fi sh navigate through their 

environments (Bennett and Tang, 2006; Goodwin 

et al, 2006), with recourse in their construction to 

anthropocentric notions such as a “game-theoretic 

approximation” and “boundedly rational agents” 
(Chapter 2.4 and the foregoing Challenge # 4).

Yet another step outwards and away from mere 

biomass as state variable in a model brings us to the 

intense, current interest in deploying the models of 

computational game theory in order to understand how 

cooperation amongst individuals arises in a community 

(for example, Dieckmann and Metz, 2005; Levin, 2006; 

or Ohtsuki and Iwasa, 2006). Indeed, this interest may 

not only be intense, but urgent. In his Kyoto Prize 

Laureate Lecture (November, 2005), entitled “Learning 

to Live in a Global Commons: Socioeconomic 

Challenges for a Sustainable Environment”, Levin gives 

us yet another insight into the cross-disciplinary nature 

of systems thinking (Levin, 2006):

Th e great challenge then is to understand 

when and how cooperation has evolved in 

biological systems, and what lessons we can 

derive from these insights for how to achieve 

cooperation in dealing with our future 

environment.

Finally, beyond the rudimentary psychology of 

Ohtsuki and Iwasa’s (2006) search for the theoretical 

underpinnings of cooperation, another step can be 

notched up, in our path towards Social Science. It 

would bring us to the work of Janssen and Carpenter 
(1999) in simulating the interaction between the 
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environment and human agents, each imbued with 

varying cultural outlooks on the Man-Environment 

relationship and capacities for learning (from each 

other, and from economic and environmental data). 

Few, if any, computational environmental studies have 

yet gone further. 

Synthesis (Culmination): Nurturing Classical “Systems 

Th inking”

When contemplating the behavior of individuals in 

herds, fl ocks, swarms, communities, or societies, it 

has become natural to think of simulation in terms of 

agent-based models, or the IBMs of Grimm et al (2005). 

Our hopes for this are not small (Levin, 2005):

Th e literature is too diverse and fast moving 

to allow an adequate review here; suffi  ce it 

to say that the development of agent-based 

approaches to understanding all aspects of 

biospheric organization, from proteomics to 

nutrient cycling to civilizations, is one of the 

most active and exciting areas of research, 

crossing disciplines and yielding new insights 

into the workings of the world.

“Systems thinking” and synthesis fl ow in other ways 

as well. Th e following — on extracting generic insights 

into adaptive dynamics in systems and then mobilizing 

them across various disciplinary domains of enquiry — 

is a classic expression thereof (Levin, 2006):

Moving from the ecological to the social or 

economic situation simply completes the loop 

— these are ideas that had their origins in 

economics, were adapted and modifi ed for 

biology, and now fi nd new application in their 

original setting.

We shall encounter later (in respect of Challenge # 

12) the telling signifi cance of this in responding to the 

community-oriented issues of our current Challenge # 5.

Th e essence of Challenge # 5, however, lies not so much 

in advancing the sophistication of IBM computational 

platforms, but in developing and implementing 

programs of research designed to reveal new insights 

into general dynamical systems properties (from the 

study of those environmental systems within the 

purviews of the EOs).

We presume there must be alternatives to the pursuit 

of IBMs alone, since nonlinear diff erential equations 

and classical calculus are clearly still predominant 

in so many other areas, at scales both above and 

below that of an individual organism. Th ey are 

used in the very small, to study metabolic maps 

(systems) of enzyme-catalyzed reactions within 

bacterial cells (Alvarez-Vasquez et al, 2005; Voit et 

al, 2006) (exemplifi ed by Figure 4). And they are as 

much the basis of models literally of global behavior 
(Kohring, 2006), whose concern is to fi nd (and avoid) 

chaotic behavior in Sanderson’s elementary model of 

global demographic, economic, and environmental 

interactions (Wonderland; Sanderson, 1994).

But what could these two schools of thought generate, 

in response to our challenge, when pursued in tandem: 

the classical nonlinear dynamical analyses associated 

with control theory, on the one hand,13 and the IBMs 

of Grimm et al (2005), Levin (2005), and Hawes and 

Reed (2006), amongst many others, on the other hand?

Tending in an encouraging direction from the one 

side is Casti’s (2002) advocacy of “biologizing control 

theory”, with its intellectual foundations set in the 

mathematical analysis of autopoietic systems — 

defi ned as those that are “capable of self-maintenance 

owing to a process of components self-generation 

from within”, which “generalizes the defi nition of life” 

according to Bitbol and Luisi (2004). Such systems, 

it appears, are not “Turing computable”, however 
(Luisi, 2003). Th e pragmatic challenges of our needs 

for the oncoming environmental cyber-infrastructure, 

such as those of soft ware protocols for bridging the 

heterogeneity of computational frameworks (for 

example, that of OpenMI arising under Challenge 

# 2 in Chapter 2.2), would seem to pale into 

insignifi cance in comparison to that challenge.

13 Which analyses have struggled to fi nd proper and 
eff ective expression in ecology (Loehle, 2006), albeit less so 
in the metabolism of cells, where Voit et al (2005) are now 
able to characterize a feedforward switching mechanism in 
bacterial glycolysis and lactate production.

64106_NSF_WhitePaper.indb   Sec2:3364106_NSF_WhitePaper.indb   Sec2:33 7/22/2009   1:38:07 PM7/22/2009   1:38:07 PM



34  Grand Challenges of the Future for Environmental Modeling

Th e Challenges

2.6 Observatory Network Design and Operation

Let us recognize a fact. Th is White Paper would not 

have been written, nor would there have been any 

Workshop in Tucson on “Grand Challenges of the 

Future for Environmental Modeling”, were there to 

have been no Environmental Observatory initiatives 

in the fi rst place. Grand issues in science provoke 

equally grand programs of observation, to the 

outcomes of which — data streams — developments 

in computational modeling will be tailored. In terms 

of large expenditures of funds, the logic is unlikely to 

run the other way, although in places our Challenge # 

1 urges that it should, as in prompting basic enquiry 

at the interstices amongst disciplines. Others have 

ventured further (Dennis et al, 2002). Th ey recommend 

that priorities for developing novel sensing devices 

should be contingent upon those barriers to theoretical 

progress identifi ed in unraveling the complexities of 

atmospheric chemistry when assembled and simulated 

in a large-scale computational model.

Nothing in the strength of this generally forward 

fl owing logic from fi eld observation to model, however, 

precludes the eff ective use of models in the design 

of observing programs and, therefore, parts of the 

Observatories themselves. As we turn now to this 

topic and embark on the next sequence of challenges 

(Challenges # 6 through # 9), we shall pick up our 

organizing triplet {u, M, y} from Chapter 1.2 — of the 

observed inputs (u), model (M), and observed outputs 

(y) — and put it to work, to ask in various textbook 

ways: given two out of the three unknowns, fi nd the 

third.

An Immediate Need for Models: Observing System 

Simulation Experiments

No experimental design, or design of an EO, can 

proceed technically in the absence of a model, albeit a 

mental model. Our focus herein is on computational, 

mathematical models (M) and their role in both the 

design and operation of observatory monitoring 

and sensor networks. Th e work of Wu et al (2005) 

is indicative of this focus. In their case, complex 

groundwater fl ow and contaminant transport models 

are used to generate a cost-eff ective sampling strategy 

intended for management of a contaminant plume. 

Clearly, in so very many cases across all facets of the 

EOs, our M are self-evidently much more sophisticated 

than mere mental models. Th ere are, therefore, many 

instances in which computational models should be 

(and are) employed in the designs of the EOs, before 

they are put in place.

Observing System Simulation Experiments (OSSEs) 

have a long history, originating in meteorology and 

climatology, where over 20 years ago Arnold and 

Dey (1986) found the subject already suffi  ciently 

mature to warrant a survey of its “past, present and 

future”. Almost as mature are their applications 

in oceanography (for example, Raicich, 2006). Th e 

proposal of Krajewski et al (2006) for a Remote 

Sensing Observatory (RSO), as a CUAHSI-inspired 

form of hydrological EO, cites OSSEs as the means of 

estimating the “impact of planned future observing 

systems and determining requirements or gaps to 

help guide priorities for unplanned future observing 

systems”. OSSEs in Environmental Engineering, 

directed expressly at operational management under 

all manner of observing network and sensor failures, 

incorporate the simulated dynamics of not only the 

observed entity but also of the sensing instruments 

themselves (Rosen et al, 2008).

In our cryptic notation, presuming a model M and 

given an input, forcing-function sequence u, some 

hypothetical bundle of data [u,y]0 can be generated, 

as though “complete” observations of the real system, 

error-corrupted or not, resolved down to some fi ne 

spatial and temporal scale (if not biogeochemical scale). 

Th e goal of the OSSE is to fi nd that “incomplete”, 

i.e., sampled, more coarsely-scaled combination 

of measured variables [u ,́y΄]S that optimizes some 

function of monitoring cost and/or measure of 

confi dence (uncertainty) in the recovery of estimates 

of [u,y]0 from [u ,́y΄]S.14 In the context of the OSSE, the 

model serves the purpose of identifying an appropriate 

sampling strategy for yielding data about the state of 

nature, as encapsulated in [u,y]. Th ese data will then 

serve the purpose of various scientifi c questions, not 

necessarily the goal of expressing anything further 

about a computational model, including that (M) 

employed in the OSSE itself.

Across the spectrum of disciplines, the most insistent 

plea emerging from the Tucson Workshop was for 

the systematic application of procedures such as 

14  Here u΄ and y΄ denote vectors of observed system 
inputs and outputs of, in principle, diff erent (smaller) orders 
and diff erent elements from those of u and y; superscript S 
denotes the fact that observations are taken at discrete points 
in space and instants in time, such that they are not literally 
continuous at some suffi  ciently fi ne-grained scale, denoted 
by superscript 0.
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OSSEs in the design of each EO, before it is fully 

constructed — as currently intended in Phase II of the 

WATERS Network EO (WATERS, 2008). OSSEs are 

not new. Th eir maturity indeed strengthens the case 

for their further use, for contemporary Observatory 

network design, more so than network operation. 

And doubtless, their computational scope and 

sophistication will continue to grow.

Experimental Design for Model Identifi ability

Th e archetypal problem of experimental design 

expressed in Chapter 1.2, of choosing the contents of 

u and y so as to maximize the “identifi ability” of M, 

has intrinsic merit in the context of modeling for its 

own sake. As opposed to design for stewardship of 

a contaminated area of land (Wu et al, 2005), it is a 

design for learning, if not discovery: of progressing 

from a prior model (M
prior 

) to an improved posterior 

model (M
posterior 

) of how the observed piece of nature 

behaves.

Interest in formally solving this problem began in 

earnest in the 1970s, primarily in terms of fi nding 

uniquely “best” or minimally uncertain estimates 

of the model parameters appearing in M, i.e., a “well 

identifi ed” model. Input perturbation (experimental) 

design was being studied as a subject of optimization, 

to serve the needs of the then burgeoning schemes 

of adaptive, real-time (on-line) control in engineered 

systems. Today, wherever the nonlinear Michelis-

Menten or Monod kinetics of growth of microbial 

organisms appears in a model — in wastewater 

treatment (Petersen et al, 2001; Brun et al, 2002; Stigter 

et al, 2006), river water quality and lake ecology (Brun 

et al, 2001; Omlin et al, 2001) or oceanography (Raick 

et al, 2006) — some detailed account of the problem of 
(a lack of) model identifi ability is given.

In fact, the problem of a lack of model identifi ability is 

nigh on ubiquitous: it permeates the present Challenge 

# 6, in attempts at minimizing, suppressing, or 

circumventing it; similarly Challenge # 7, where the 

key goal is to cope with it and quantify its associated 

uncertainties; as much as in Challenge # 8, which 

calls for robust forecasts in the face of it. Th e thread 

of uncertainty connects the three (Beck, 1987): 

experimental design for the pre-emptive reduction 

of model uncertainty (Challenge # 6); identifying 

the model in spite of all the uncertainties — and 

enumerating them and their loci in the model 
(Challenge # 7); and accounting for the consequences 

of those residual uncertainties, as they propagate 

forward in any forecasts generated with the model 

(Challenge # 8). Th ere is no shortage, then, of 

discussion elsewhere of the issue of a lack of model 

identifi ability, conspicuously so in the literature of 

Hydrology. Th is Paper will be no exception, although 

the burden of the attaching discussion will be deferred 

until expression of Challenge # 7 in Chapter 2.7.

Sustained thus for nearly three decades now, the design 

of optimal, probing inputs (u) is culminating in what 

can only but be described as “systematization” on an 

almost industrial scale, as befi ts the contemporary 

scene in biotechnology more generally (Lindner and 

Hitzmann, 2006):

Combinatorial chemistry will create new 

enzymes, whose kinetic parameters have to 

be elucidated effi  ciently. High-throughput 

techniques are applied here for target fi nding. 

By using such an experimental design 

approach in this area, the additional eff ort 

will be rewarded by a higher precision in 

parameter estimation, producing more reliable 

results in target fi nding.

Th e work of Lindner and Hitzmann (2006) examines 

the optimal allocation of fi nite observing and 

perturbation capacities, in principle (in theory). Th at 

of Petersen et al (2001) deals with the same, but in the 

practical design and operation of instruments to be 

placed in the harsh, rugged environment of microbial 

growth in biological wastewater treatment. To their 

work has been added the signifi cant refi nement of 

adaptive specifi cation of input (feeding) perturbations 

as learning proceeds on-line in respect of the (model 

of the) behavior of the system (Stigter et al, 2006). We 

stand, therefore, on the verge of having very “smart” 

instruments: on-line respirometers, i.e., microcosms 

of the prototype system, wherein identifi cation of 

the model of that instrument, MI (with superscript I 

denoting instrument), is being performed in a “self-

aware” and “self-optimizing” manner in real-time. Th e 

smart instrument performs these functions, moreover, 

in the service ultimately of progressing from a prior 

model, M
prior

, to an improved posterior model, M
posterior

, 

of the environmental system itself (not the instrument). 

Unlike the fed-batch reactor in a respirometric 

instrument, or even the engineered unit processes of 

wastewater treatment, larger-scale, fi eld hydrology 

cannot benefi t in general from deliberate manipulation 

of the inputs to the system (u). It does enjoy the 

64106_NSF_WhitePaper.indb   Sec2:3564106_NSF_WhitePaper.indb   Sec2:35 7/22/2009   1:38:07 PM7/22/2009   1:38:07 PM



36  Grand Challenges of the Future for Environmental Modeling

Th e Challenges

signifi cantly perturbing events of precipitation, 

nevertheless. In a somewhat restricted sub-domain, 

where knowledge is required of the particular paths of 

water fl ow through a watershed (Vaché and McDonnell, 

2006) — for example, because of the diff erent chemical 

signatures attaching to each path (as in the response 

of streams to inputs of acidic precipitation) — the 

role of natural tracers in concert with happenstance 

precipitation sequences has been expressly studied 

from the perspective of model identifi ability and 

experimental design (Beck et al, 1990). Given a model 

of the watershed (M) and observations of stream fl ow 

and tracer concentrations, the question was, in essence: 

what kind of precipitation event at the right time in the 

right sequence of events (or absence of events) would 

reveal more about the behavior of the system, and more 

clearly, with less uncertainty attaching to the posterior 

estimates of the model’s parameters?

Adaptive Sampling and Observatory Operations

From experience of the natural environment, we 

note the potential opportunity of contingencies. 

From the well controlled, constructed environments 

of biotechnically engineered systems, derives access 

to smart instruments and a rich supply of detailed 

theoretical studies of experimental design. Benefi tting 

from both, our next challenge assumes this textbook 

form. Given M, and given the revelation that current 

observations (u with y) from an operational EO are 

inconsistent with that M, how should observing 

capacity (u, y) be redeployed?

Expressed less cryptically, we have this.

Challenge # 6:

Given a mature complex of environmental 

cyber-infrastructure and sensors, with — 

crucially — both an ever-alert monitoring 

and horizon-scanning facility and in-

depth capacity for real-time processing 

of information and production of 

knowledge, what kinds of novel, model-

based computational schemes of adaptive 

environmental sampling will be needed 

to enable rapid re-targeting of observing 

capacity for on-line probing of, and 

experimentation with, systems behavior?

According to Darema (2005) the phrase “Dynamic 

Data Driven Applications Systems” (DDDAS) entered 

the lexicon of discussions of cyber-infrastructure 

some time in early 2000. It is only because of the 

advent of Grid computing and the prospect of 

an environmental cyber-infrastructure that we 

are able to contemplate responding to the above 

challenge. And by far the most interesting facet of 

the envisaged environmental cyber-infrastructure 

is the presumption of its scope for two-way 

communications: that somehow the implemented, 

but planned, observing functions of the EOs are 

sensitized to detecting an anomaly and invested with 

suffi  cient “intelligence” for redeploying observing 

capacity to re-focus on that peculiarity, in an instant, 

in real-time.

Figure 5 is one instance of such a vision, taken from 

the work of Mahinthakumar et al (2006) on threat-

response in public, potable water supply systems. Th e 

purpose of this ever-alert cyber-infrastructure and 

DDDAS, continually primed and poised to detect 

an “incident”, is to address questions such as these 

(Mahinthakumar et al, 2006):

Where is the source of contamination? When 

and for how long did this contamination 

occur? Where should additional hydraulic 

or water quality measurements be taken 

to pinpoint the source more accurately? 

What is the current and near future extent 

of contamination? What response action 

should be taken to minimize the impact of 

the contamination event? What would be the 

impact on consumers by these actions?

Its features are not greatly dissimilar from the 

DDDAS of Flikkema et al (2006), which seeks 

to control a poised, ever-alert network of smart 

wireless sensors in order to improve (ultimately) the 

prediction of biodiversity and carbon accumulation in 

terrestrial ecosystems. Th e case-specifi c questions of 

Mahinthakumar et al, (2006), if solved by the cyber-

infrastructure in a more automated manner, would 

begin to articulate some of the ideas of subliminal 

damage limitation and self-repair expressed earlier in 

the same domain of metropolitan water infrastructure 

(with reference to Box 1 of Chapter 2.1, under Challenge 

# 3 and, in particular, Challenge # 5; Beck, 2005a).

We shall exploit these more generic features of Figure 5 

in outlining indicative responses to Challenge # 6.

Consider this. When operating in a normal, routine 

mode, suppose the Observatory is gathering in data 
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[u,y]S at some coarse level of resolving power relative 

to [u,y]0 (as previously defi ned) and with a model of 

the environmental system that is invariant with time, 

M. In the frame of Figure 5, M will be embedded 

in the “simulation engine”; [u,y]S are what pass into 

the “adaptive wireless data receptor and controller” 

from the sensors; while [u,y]0 constitutes the universe 

of all that could be happening in the environment 

surrounding the cyber-infrastructure.

Let us further assume that at some point in space-

time, P(t,s), something in the “gap” between [u,y] S 

and [u,y]0 — something conceptually originating 

in the {acknowledged unknown} —  impinges upon 

the behavior of the system, including a spontaneous 

opportunity for better or diff erent learning about the 

nature of the observed system. Alternatively, suppose 

something occurring within the data stream [u,y] S is 

signifi cantly not consistent with M, i.e., not consistent 

with the {presumed known}. Or we could imagine an 

incident where what the cyber-infrastructure perceives 

through [u,y] S as anomalous, originates in neither the 

{presumed known} nor the {acknowledged unknown}. 

Instead of the event originating in the environment 

of the cyber-infrastructure, [u,y] S is corrupted as 

a consequence of faults and failures in the sensor 

network, such as within the “static water quality sensor 

network” of Figure 5. Or there again, all three types of 

event could occur as an entangled, compound incident. 

In short, the event has propagated into the core of the 

cyber-infrastructure, triggering the kinds of questions 

already listed above (Mahinthakumar et al, 2006).

At this point in our thought experiment, the essential 

question of Challenge # 6 is as follows: how should the 

fi nite observing capacity be re-deployed, away from 

the previous regime [u,y;t -] S towards [u ,ʹy ;ʹt +] S where 

t- marks time before t and t+marks time aft er t, the 

moment of the event. What signals are to pass back out 

of the enabling cyber-infrastructure of Figure 5, from 

Schematic vision of a Dynamic Data Driven Applications System (DDDAS) for threat response in public, potable water supply systems (Mahinthakumar et al, 2006; 
reprinted with permission).

Figure 5

64106_NSF_WhitePaper.indb   Sec2:3764106_NSF_WhitePaper.indb   Sec2:37 7/22/2009   1:38:07 PM7/22/2009   1:38:07 PM



38  Grand Challenges of the Future for Environmental Modeling

Th e Challenges

the “adaptive wireless data receptor and controller” 

block, to the sensors in the fi eld? Th is, of course, 

implies an answer to the prior question, of detecting 

the occurrence of the event in the fi rst place and then 

diagnosing the nature of its several possible components.

At the heart of contemporary work on fault detection 

and environmental vulnerability in a real-time network 

for monitoring water quality in the Lagoon of Venice 

(Ciavatta et al, 2004), resides the notion of a model of 

time-varying structure (M(t)) as the means to solve 

such problems. In other words, there can be “structural 

change” in the behavior of a system. M is not invariant 

but evolving with time, from M(t-) to M (́t+), a matter 

of considerable signifi cance below in expressing 

Challenge # 7 (Beck, 2002; 2005b). Cast in the cyber-

infrastructure of Figure 5, this would be tantamount 

to the “adaptive simulation controller” managing an 

adaptive model, with the fl ow of “model parameters” 

between controller and “simulation engine” reversed, 

if anything. For it is the reconstructed temporal 

variations in these parameters — their drift s, jumps, 

oscillations, and so forth, estimated recursively in real 

time (t) — that off er uniquely defi ning insights into the 

nature of the event. Hence, a particular re-deployment 

of the sensor network’s observing capacity can be 

determined; and that is the essential output from the 

cyber-infrastructure in this instance.15

Hints of such adaptive capacity, in the performance 

of the cyber-infrastructure, as much as through 

“structural change” in an adaptive model, can be found 

in Lermusiaux et al (2006a), who write as follows of 

“adaptive sampling” and “adaptive modeling” in the 

context of ocean research:

Adaptive sampling forecasts the observing 

paths that minimize uncertainties, optimizes 

the sampling of dynamical hot spots and 

maintains overall coverage. Adaptive 

modeling selects the physical or biological 

parameterizations that give the best model-

data fi t.16

15  Using indeed the same algorithms of recursive 
estimation undergirding the adaptive, experimental control/
probing of Stigter et al (2006); and broadly consistent, 
therefore, with the Bayesian algorithmic setting of Figure 5 
(Mahinthakumar et al, 2006), likewise too that of Flikkema 
et al (2006).

16  Th is may, however, suggest an instance of a number 
of alternative, time-invariant, candidate, model structures 
M

i
, i = 1, ..., n, with evolving probabilities assigned at suc-

ceeding points in time (t) in order to describe the structure 

Th ey proceed to qualify their defi nition of “adaptive 

sampling” as (Lermusiaux et al, 2006a):

Th e path, locations and other properties 

of observing platforms and sensors can be 

optimized and adapted in real-time, so as 

to respond to the ocean variability and its 

uncertainties.

and elsewhere as (Lermusiaux et al, 2006b):

[A]daptive sampling estimates the types and 

locations of the observations that are most 

needed.

[A]daptive modeling identifi es the model 

properties that need most improvements.

Erasing Boundaries Between System, Sensor, Cyber-

infrastructure, and Model

Th e distinctiveness of the approaching environmental 

cyber-infrastructure is its promise of a seamless 

integration of communications: from point of sensing 

in the environment to the computer screen in front 

of the analyst; and back, in the reverse direction, 

from keyboard/touch-screen to the object of scrutiny 

in situ. Anticipating this operational, real-time 

Observatory facility, science planning for the WATERS 

EO envisages a continual two-way re-allocation of 

resources across the cyber-infrastructure to track, for 

example, any incipient and then unfolding anomaly in 

the occurrence of a coastal hypoxia event (WATERS, 

2007a, 2008).

Where exactly the intelligence of the computational 

model is to be vested, along the communications bus 

between offi  ce desktop and sensor in the rough of 

the fi eld (as, for example, in Figure 5), is becoming 

now a matter of rather free and thought-provoking 

interpretation. Environmental engineering, for 

example, is taking such interpretation to considerable 

sophistication, in particular, in wastewater systems 

engineering, with its interest in the operational control 

of microbial ecosystems. As we have seen (Petersen et 

al, 2001; Stigter et al, 2006), a model (MI) may become 

integral to the sensing device, as in the microcosm of 

an in-line respirometer, whose deliberate mechanical 

functions, of aeration, mixing, and quiescence, are 

most likely to refl ect observed behavior at that time — some-
thing of signifi cance in Challenge # 8.
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geared to maximizing the identifi ability of the model 

of the observed system itself (M) (Vanrolleghem et 

al, 1996). In the cyber-infrastructure of Figure 5, MI 

would be embedded in the sensor block “static water 

quality sensor network”, while M is lodged in the 

“simulation engine”.

Th ere is a certain complementarity. Just as the model 

(MI) can be embedded in the (real) sensor, so the 

behavior of the (virtual) sensor can be incorporated 

within the model (M) of the whole — simulation, in 

eff ect, of the cyber-infrastructure and the observed 

environmental system (Rosen et al, 2008).

Stepping back from the clutter of the technical detail, 

while noting the potential for our thinking to be 

blinkered by the focus of this Paper on the role of 

modeling in the EOs, three further vital questions 

follow: can the essential adaptation in re-directing 

observing capacity (in an instant; at a moment’s 

notice) be implemented without a computational 

model (M); how should the value added in conducting 

the adaptation with a model be maximized; and can a 

model be expressly designed with such maximization 

in mind?

2.7 System Identifi cation

We all want the model to approximate the real thing 

in some demonstrable manner, for reasons of scientifi c 

enquiry or for some other purpose, such as making a 

prediction in association with determining a course of 

future actions of environmental stewardship. Indeed, 

the extent to which the model can be reconciled with 

past observed behavior is a measure of the extent 

to which we might judge the primary science to be 

provisionally corroborated. At the same time, the 

map of uncertainty attaching to the posterior model’s 

conceptual structure and its constituent mechanisms, 

aft er this process of system identifi cation, will 

have signifi cant consequences for any exercises in 

forecasting and investigating possible future patterns 

of behavior (Beck, 1987). In this sense, the second 

and third of our textbook problems from Chapter 1.2, 

i.e., “given u and y fi nd M” (system identifi cation) 

and “given M and u fi nd y” (forecasting and foresight 

generation) are intimately inter-related. Both, 

however, are suffi  ciently substantial to merit their own 

respective Challenges, and will therefore be treated in 

separate chapters.

For a Paper on grand challenges for environmental 

modeling (M) — arising expressly from initiatives (the 

Environmental Observatories) designed to provide 

access to unprecedented streams of data [u,y] — there is 

arguably no greater challenge than that of responding to 

the novelty unleashed thereby in those “acts” of Lewis, 

“which interpret data in terms of concepts”, i.e., system 

identifi cation. Th is is model calibration writ immensely 

more richly. And because the richer, more philosophical 

facets of system identifi cation can so oft en be obscured 

by the straightforward pragmatism of model calibration, 

there is considerable intricacy and deeper subtlety 

now to be conveyed. Much of the supporting detail 

of the narrative surrounding this next Challenge has 

therefore been placed in Boxes 2 and 3. From that detail, 

however, emerges an important emphasis on scientifi c 

visualization as part of a preliminary program of 

research for responding to the Challenge.

History: Algorithms for Model Calibration

Inasmuch as the 1960s were a time of “youthful 

exuberance” in the development of environmental 

simulation, so did great expectations surround the 

outward dispersal of the computational methods of 

Statistics, Operations Research, and Control Th eory, 

from aerospace engineering into environmental science 
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and, for present purposes, into the topic of model 

calibration (Beck, 2002).17 Th e prior, rudimentary 

practice of trial and error — of trying out diff erent 

values for the model’s parameters (α) until the “curve” 

of the estimated outputs would match satisfactorily 

(in some sense) the “dots” of the observed output 

data — was to be supplanted by the more systematic, 

objective procedures of mathematical programming, 

optimization, mathematical fi ltering theory, and 

the like. Th e modernism of “automatic calibration”, 

detached from subjective manipulation, was to 

supercede the craft -skill of “calibration by hand”. It did 

not. Th e two co-exist fruitfully today, notwithstanding 

the supposed academic inferiority of the latter.

Such diffi  culties in applying the computational 

algorithms of model parameter estimation and system 

identifi cation are not surprising. For we have already 

examined in some depth model-based procedures 

of experimental design, for overcoming a lack of 

model identifi ability (in Chapter 2.6 in respect of 

the foregoing Challenge # 6). To recall, a lack of 

identifi ability is defi ned technically as the inability to 

locate a set of values for the model’s parameters that 

are self-evidently superior to the myriad of all other 

candidate sets of values in generating a uniquely best 

match between the model and the data. Attempting 

to overcome a lack of model identifi ability matters 

philosophically — in the growth of secure knowledge 

— because this implies a determined attempt at 

expunging ambiguity in interpretations of Lewis’s 

“data” and at reducing to a singularity an otherwise 

plurality in his plausible  “sets of concepts”.

Th ese diffi  culties of a lack of model identifi ability arose 

not because of the inadequacies of the algorithms 

themselves, but as a result of the growing complexity 

(and nonlinearities) of the models, on the one hand, 

and of the nature of the data, on the other — their 

sparseness across the space-time-biogeochemical 

continua and their uncertainties. Whereas calibration 

by hand may never have shed light on such diffi  culties 

of model identifi ability, automatic calibration revealed 

them very early on and all too consistently since. 

Th ey may seem esoteric diffi  culties, of concern only to 

Science. Yet they matter to the public, since Mooney 

fully intends scientifi cally-lay members thereof to 

17  A topic — of whether to calibrate a model or not — 
that remains controversial, or at least one in which diff erent, 
opposed schools of thought continue to prosper: witness the 
current views of the recently published NRC document on 
evaluating models used in the regulatory decision-making 
process (NRC, 2007; pp 124-126).

read his (2007) popular account of “Storm World 

— Hurricanes, Politics, and the Battle Over Global 

Warming” (Mooney, 2007). His account (literally) 

personifi es what we shall describe below as the matter 

of model structure identifi cation.

One of the most signifi cant algorithmic developments 

in the 1970s was thus a retreat from the expectations 

of automatic calibration to a procedure of hypothesis 

screening, known familiarly today as a Regionalized 

Sensitivity Analysis (RSA; Hornberger and Spear, 1981). 

Our discussion has already alighted on this, in Chapter 

2.1 (Challenge # 1). RSA was tailored to the needs of 

evaluating the model-encoded science base in those 

very many situations with but sparse, quantitative 

data supplemented by the qualitative, subjective, 

experience of the system’s apparent behavior, as 

gathered informally by scientists working in the fi eld. 

Its goal was to answer the question: under the gross 

uncertainties of system behavior observed as such, 

which more or less speculative constituent hypotheses 

in the model are key — and which redundant — to 

discriminating whether the model generates behavior 

akin (or not) to that observed experience.

Th is conceptual and algorithmic break with the 

expected trend was in due course refl ected back onto 

the study of more conventional, less-sparse, data 

situations (Hornberger et al, 1985; Keesman and van 

Straten, 1990); adapted to incorporate some of the more 

subjective elements of interpreting matches of model 

performance with observed data (Wheater et al, 1986); 

and re-combined conceptually with the mainstream 

of those algorithms of automatic calibration that had 

evolved in the meantime (Gupta et al, 1998); thus to 

be found in its current realization under the label of a 

“dynamic identifi ability” method (Wagener et al, 2003; 

with further embellishments in Choi and Beven, 2007).

Across those four decades, algorithmic notions of 

how to attain the optimum — here of estimates of the 

parameters α within the structure of the model M

— had progressed towards computational exploitation 

of the biological notions of genetics and evolution, 

combining therein principles of intelligent adaptation 

and randomized experimentation, as, for example, in 

the algorithmic innovation of Duan et al (1993) and its 

successors. Signifi cantly, things seem almost to have 

come full circle, driven by the changing and expanding 

capacity for observation, perhaps most tellingly 

conveyed in the increasing refi nement, intensity, and 

extensiveness, of sampling along the space-time-

biogeochemical continua already alluded to in
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Chapter 2.2 (for instance, Kirchner et al, 2004). 

Accordingly, the original impulse towards what is 

now the vast fi eld of automated model calibration 

in its more customary forms may well be enjoying 

a renaissance, typifi ed by the contemporary works 

of Mugunthan et al (2005) and Moore and Doherty 

(2006), both notably in respect of models described as 

“computationally expensive”, i.e., VHOMs.

Given this history — and it is the history of the 

persistent defi cit in engaging VHOMs with fi eld data 

in a context of discovery and learning — our next 

Challenge is expressed as follows.

Challenge # 7:

Under the expectation of massive 

expansion in the scope and volume of fi eld 

observations generated by the Environmental 

Observatories, coupled and integrated with 

the prospect of equally massive expansion in 

data processing and scientifi c visualization 

enabled by the future environmental 

cyber-infrastructure, what radically novel 

procedures and algorithms are needed to 

rectify the chronic, historical defi cit of the 

past four decades in engaging complex 

models (VHOMs) systematically and 

successfully with fi eld data for the purposes 

of learning and discovery and, thereby, 

enhancing the growth of environmental 

knowledge?

Th is is redolent of the over-arching challenge for this 

entire White Paper (Challenge # 0).

Likewise, we should be reminded of Lewis’s pragmatist 

approach to the growth of knowledge, in particular, the 

pivotal element in his schema: of “acts which interpret 

data in terms of concepts”. Challenge # 7 is both more 

specifi c in its intent and central in the convergence 

and potential exploitation of the two principal 

innovations anticipated with the advent of the EOs. On 

the one hand, there is the cyber-infrastructure, which 

continues to extend the ambition of complex models 

beyond even VHOMs to the ever-receding horizon 

of virtual realities — the ultimate computational 

mechanizations of Lewis’s sets of concepts. On the 

other, a qualitatively more comprehensive suite of 

observing technologies is to be developed and installed 

(NSF, 2005), yielding what we shall refer to as high 

volume high quality (HVHQ) data. Challenge # 7 

is essentially about the algorithms, procedures, and 

support-soft ware required to maximize the benefi ts 

from these two innovations, taken inseparably together.

Should anything be said of responses to Challenge # 7 

in respect of charting the future course of algorithms 

of mathematical programming, albeit those focused 

on the needs of calibrating environmental models? 

Th is, we confess, is beyond the scope of this White 

Paper. We shall merely presume that progress along 

that avenue will indeed be fruitful and unfold in 

ways continuing to benefi t our systematic attempts at 

reconciling VHOMs with HVHQ data. Most notably, 

we should welcome the targeting of such developments 

at the estimation of very high-order vectors of model 

parameters (α) in addressing a generic problem we shall 

now call model structure identifi cation.

Model Structure Identifi cation: Th e Problem

Th ere is another reason for the occurrence of a lack of 

model identifi ability, not widely acknowledged until 

recently, which therefore, by refl ection, extends the 

opportunity of signifi cant novelty in future research.

A fi xed model structure (M) populated by invariant 

parameters (α), or logical rules (as in IBMs), is a very 

strong presumption. Th e structure of a model is 

defi ned by the input, state, and output variables chosen 

to characterize the behavior of the modeled system, 

the logic of the inter-connections amongst all these 

variables, and the particular mathematical forms and 

rules of the various assumed interactions. To say that 

a model suff ers from structural error/uncertainty, or 

conceptual error, is to indicate error or uncertainty 

in any one of these facets. For example, and most 

simply, we might judge that, except for an incorrect 

mathematical form for the interaction between two 

variables, all else about the model’s structure is correct. 

More profoundly, however, our view might be that 

signifi cant and manifest attributes of the system’s 

behavior appear to attach to (unknown) variables 

entirely omitted from the model.

In introducing the notion of models as devices for 

hypothesis generation and screening in response 

to Challenge # 1 — and putting the same to work 

again in the preceding Chapter 2.6, in respect of 

diagnosing the nature of incidents impinging upon 

the ever-alert cyber-infrastructure (Challenge # 6) 

— we made use of the following dichotomy. When a 

model is constructed, certain pieces of the primary 

science bases are presumed known and included 

64106_NSF_WhitePaper.indb   Sec2:4164106_NSF_WhitePaper.indb   Sec2:41 7/22/2009   1:38:09 PM7/22/2009   1:38:09 PM



42  Grand Challenges of the Future for Environmental Modeling

Th e Challenges

in explicit mathematical form, i.e., the {presumed 

known}. Its complement, that which is acknowledged 

as not known, i.e., the {acknowledged unknown}, is 

therefore not included in the model’s structure, by 

defi nition — except typically under the lumped, and 

largely conceptual, stochastic processes customarily 

referred to as the system and/or observation noises. In 

the light of this distinction, the foregoing reference to 

structural “error/uncertainty” is not a matter of being 

pedantic. For there are important diff erences between 

discovering that the {presumed known} is in fact in 

error and discovering that something of signifi cance, 

not arising from pure chance, resides in the uncertainty 

of the {acknowledged unknown}. Th is we recognize 

from Challenge # 6.

To presume such structural error/uncertainty is 

negligibly small is therefore a strong assumption, 

especially the greater the coverage in the model of 

the non-physical quantities along the biogeochemical 

continuum. Relaxing this assumption, therefore, to 

proceed from a prior structure for the model, M
prior

, to 

an improved posterior model, M
posterior

 — and, crucially, 

by reference to a set of fi eld data — we refer to as model 

structure identifi cation. Th e work of Spitz et al (2001), 

on calibrating an ecosystem model for the upper, mixed 

layer of the ocean to the Bermuda Atlantic Time Series 

(BATS) observations, turns out to be exemplary in this 

sense. In their advance from an M
prior

 to an M
posterior

, a 

new state variable is introduced (meso-zooplankton 

biomass); the forms of the interactions amongst three 

states (dissolved organic matter; bacterial biomass; 

and ammonium) are re-structured to provide an 

improved account of the microbial loop; and the ratio 

of chlorophyll-a to carbon in phytoplankton biomass 

— seemingly an invariant model parameter — is re-

expressed as a function of two state variables (Spitz et 

al, 2001).

Responding to the Problem: Conceiving of Model 

Parameters Not as Constants

A key to solving the problem of model structure 

identifi cation is the idea that the parameters in a 

model may vary with time and space. Conceiving of 

parameters (α) in a model as entities changing with 

time — the notion that they might not actually be 

“constants” — and applying this outlook within the 

context of model structure identifi cation, date back at 

least to the late 1960s (Young, 1978; Beck, 2002), if not 

earlier (Young, 1984). Th e logic of why structural error/

uncertainty in a model, which is axiomatic, implies 

the need to conceive of model parameters as capable 

in principle of variations in time, is an argument of 

rather more recent origin (Beck, 2002, 2005b), and 

will not be rehearsed herein. Likewise, algorithmic 

frameworks enabling computation of estimates of 

model parameters varying across time (and space), 

such as recursive estimation, Regionalized Sensitivity 

Analysis (RSA), and conventional optimization, are 

merely summarized and briefl y illustrated in Box 2.

Ultimately, progress in acquiring knowledge of any 

system’s behavior is gauged by the extent to which 

the goal of a model populated by parameters that are 

indeed demonstrably constants, is achieved. Or, in 

the case of the IBMs of Ecology, similar progress will 

be evident when it can be concluded that constituent 

rules of individual behavior are invariably appropriate 

for all individuals for the entire extent and period 

of simulation (Grimm et al, 2005; Railsback, 2001). 

Suffi  ce it to say that being able to estimate values for a 

model’s parameters that change with time and space 

is therefore indicative of that goal not having been 

attained (strictly speaking, the goal is essentially ever-

receding). Th is is informative evidence of: (i) the fact 

that the model’s structure contains fl awed constituent 

hypotheses or suff ers from signifi cant omissions; 

and (ii) the manner in which those fl aws might be 

rectifi ed and omissions fi lled, as a part of the search for 

invariance in the model’s parameters and rules, hence 

provisional stability (or security) in the bits of the 

science base encoded in the model.

A Broader Context in Which to Deploy the Algorithms

Th ere are higher levels, other than that of the basic, 

core algorithms of estimation, at which to build 

a coherent response to the problems of model 

structure identifi cation embedded in Challenge # 7. 

Our expectation is of novelty arising precisely from 

such a greater breadth of perspective, with its scope 

for orchestrating a greater variety of approaches to 

problem-solving.

We begin by noting how our discussion hitherto 

has been dominated by one particular view of 

environmental models: that they are based on 

diff erential equations with the customary algebraic 

expression of the constituent hypotheses of which such 

models are composed. Th e role of models more typical 

of those labeled as originating in Statistics, such as the 

transfer functions of time-series analysis (Young, 1998) 

or wavelet analysis (Kumar and Foufoula-Georgiou, 

64106_NSF_WhitePaper.indb   Sec2:4264106_NSF_WhitePaper.indb   Sec2:42 7/22/2009   1:38:09 PM7/22/2009   1:38:09 PM



Chapter 2: Science  43

BOX 2

Algorithmic Frameworks for Reconstructing Parameters Not as Constants

Discerning the signifi cance of the problem of model structure identifi cation, and of the role of 
estimating parameters that change with time and space in solving that problem, can be approached 
from several algorithmic points of departure.

Filtering Theory

The most obvious, from the 1960s onwards, has been the availability of mathematical fi ltering theory 
and recursive algorithms for state-parameter estimation. These were designed precisely for the 
purpose of estimating quantities sequentially, at each successive, discrete, observing point in time-
space, (ti, sj), for i = 1, 2, ..., ni and j = 1, 2, ..., nj. And their availability as solutions can fairly be said 
to have prompted conception and characterization of the (self-styled) problem of model structure 
identifi cation in the fi rst place (Beck and Young, 1976). The current incarnation of these algorithms of 
recursive estimation and fi ltering theory can be found in Lin and Beck (2007a), from which we take the 
following illustration of how reconstructing time-varying estimates of a model’s parameters, i.e., α̂(t), 
can be trained on the problem of model structure identifi cation.

We have access to HVHQ 
data such as those of Figure 2 
in Chapter 1 (for wastewater 
treatment), although here 
with reference to the 
behavior of a manipulated 
aquaculture pond, a posterior 
conceptual model of which 
is shown in Figure B2.1. 
Figure B2.2 demonstrates the 
performance of this model. 
The result can be thought 
of as but a “snapshot” in 
the ongoing process of 
reconciling a succession of 
evolving candidate model 
structures with a portion 
of the HVHQ data. At this 
particular juncture, the most 

signifi cant element of the posterior structure of Figure B2.1 is its incorporation of an account of the 
dynamics of duckweed and alkalinity-related features, omitted from the immediately previous prior 
model structure and provisionally determined as prime candidates for inclusion.

When reconciliation of that prior candidate model structure (Mprior) with the fi eld data was attempted 
— en route subsequently to the posterior structure (Mposterior) of Figure B2.1 — that “act” (sensu Lewis) 
yielded the parameter estimates of Figures B2.3 and B2.4. These attach respectively to the {presumed 

Typical block diagram for an a posteriori model structure (Mposterior) of nutrient, algal, and duckweed 
dynamics in a manipulated aquaculture pond: blocks represent state variables (x); model parameters (α) 
will typically be associated with the mathematical expressions describing interactions among the state 
variables (lines/arrows in the diagram). Reprinted with permission from Lin and Beck (2007a).

Figure B2.1
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known} and {acknowledged 
unknown} divisions of the 
relevant (prior) knowledge 
base. The estimates derive 
from a Recursive Prediction 
Error (RPE) algorithm (Lin 
and Beck, 2007a). For present 
purposes, all that needs to 
be said of these results is 
merely this: the trajectories 
of the reconstructed 
parameter estimates vary, 
both in terms of departure 
from their initial values and 
over extended intervals 
(in some cases), yet not in 
an utterly random manner 
incapable of sustaining any 
further interpretation. Such 
interpretation is genuinely a 
struggle. It is neither trivial 
nor aimless, in spite of such a 
simple prior model structure 
and a rich base of hypothetical 
knowledge surrounding 
possible forms of the posterior 
model, albeit rarely directed 
at description of the dynamics 
of duckweed (promotion of 
whose growth was not part of 
the deliberations in designing 
the experimental manipulation 
of the pond system).

The evidence of Figures B2.3 
and B2.4 is a part — and an 
important part — of what must 
be fed into the expression of 
Figure B2.1 from diagnosis of 
the failure of the prior model. 
Above all, the availability of 
such kinds of evidence on 
parametric variations (or 
invariance) should accelerate 
arrival of the moment at 

Match of behavior of posterior model structure (Mposterior) with fi eld observations of (a) algal biomass 
(chlorophyl-a) concentration and (b) dissolved oxygen concentration (DO). The reconstructed (unob-
served) state variable for duckweed biomass is shown as the dashed, magenta line in (a). Reprinted with 
permission from Lin and Beck (2007a).

Figure B2.2

Estimates from a Recursive Prediction Error (RPE) algorithm for parameters logically attaching to the 
{presumed known} of the prior model structure (Mprior). Reprinted with permission from Lin and Beck 
(2007a).

Figure B2.3
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which the serendipitous 
thought occurs in the dialog 
between Statistician and 
Marine Ecologist, as we have 
caricatured it in our discussion 
of Challenge # 2 (regarding the 
role of the cyber-infrastructure 
in facilitating basic scientifi c 
discovery). It is as though 
the structure underlying the 
behavior captured in the data 
is as that encapsulated broadly 
in the posterior structure, but 
demonstrably not so relative 
to that of the prior structure, 
some of whose constituent 
members — hypotheses, 
embedded in which are 
parameters — are shown 
as failing in the attempt to 
reconcile that prior structure 
with the data.

Estimates from a Recursive Prediction Error (RPE) algorithm for parameters logically attaching to 
the {acknowledged unknown} of the prior model structure (Mprior). Reprinted with permission from 
Lin and Beck (2007a).

Figure B2.4

Figure B2.5
Graphical scheme for representing a model’s 
structure, based (in part) on the schematic 
representation of the pharmaceutical system 
of Figure 4: state variables (x) are denoted 
as yellow nodes in this structure, while model 
parameters (α) are associated with the blue 
(or red) branches connecting the nodes to 
each other. Blue branches signal those facets 
(constituent hypotheses) of the model structure associated with model parameters found to be 
invariant and, therefore, robust and reliable in the face of the given test against fi eld observations. 
Conversely, red branches indicate signifi cant, non-random variability in what are presumed to be 
(ideally) constants and, accordingly, failure of the model structure, in specifi c, constituent parts.
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To assist, even accelerate, the laborious process of proceeding from an obviously inadequate prior 
model structure (Mprior

) to a less inadequate posterior structure (Mposterior), what we should need, in 
general, is something such as that of Figure B2.5. Coloring of the branches in this visualization of the 
essential concept of model structure is quite deliberate: blue for invariant parameter estimates and 
therefore provisionally secure constituent parameters; red for deformation over time, as the given 
constituent members (hypotheses) of the structure buckle (fail). We know in principle how the RPE 
algorithm could generate these colors and their changes with time, which obviously would require 
some form of animated scientifi c visualization.

Regionalized Sensitivity Analysis and Dynamic Identifi ability

From an algorithmic point of departure quite different from that of fi ltering theory, and faced with 
the recalcitrant problem of a lack of identifi ability in calibrating hydrological models, Wheater et al 
(1986) sought yet another route to its obviation.

Specifi c segments, blocks, or windows in the empirical hydrological record are especially informative 
(information-rich) with respect to identifying the values of particular model parameters. Thus, 
instead of seeking to choose uniquely best, invariant, singular values for all of the parameters across 
the entirety of the empirical record, i.e., for all (observed) time, it could be more benefi cial to search 
for uniquely best, invariant, singular values for some of the parameters for some segments of the 
record, i.e., for some of the time. Thus was opened up the possibility — not exploited at the time — 
of the parameters desirably having different values at different times.

In a benchmark paper, and likewise faced with an inevitable lack of model identifi ability, Gupta et al 
(1998) came to the view that further progress in model calibration would only be achieved through 
radical changes of perspective. They proposed that algorithms of parameter estimation should 
henceforth be assigned the task of seeking to minimize structural error in the model at all (discrete) 
points in time. Further, under a Pareto perspective on the attaching optimality, if this meant different 
“best” values for the model’s parameters at different instants in time, so be it. They too had thereby 
opened up the prospect of entertaining parameters desirably having different values at different 
times (Gupta et al, 1998).

From an amalgam, in effect, of these ideas of Wheater et al (1986) and Gupta et al (1998), within 
the algorithmic framework of Regionalized Sensitivity Analysis (RSA), has emerged the dynamic 
identifi ability procedure of Wagener et al (2003). We know that such procedures can succeed 
when put to work on the problems of model structure identifi cation illustrated above in respect of 
recursive estimation and interpretation of data from a manipulated aquaculture pond (Chen and 
Beck, 2002).

Classical Optimization

Entertaining the possibility that a prior candidate model structure (Mprior) is actually populated 
with parameters that vary over a segment of discretized time-space implies a very high order for 

64106_NSF_WhitePaper.indb   Sec2:4664106_NSF_WhitePaper.indb   Sec2:46 7/22/2009   1:38:13 PM7/22/2009   1:38:13 PM



Chapter 2: Science  47

BOX 2

that model’s parameter vector, i.e., α(ti, sj). In particular, the more are the number of points in time 
and/or volumes in space to which the model (VHOMs) and fi eld observations (HVHQ data) refer, 
i.e., ni and nj are large, so the order of α(ti, sj) may, in principle, become very large. Thus derives 
the considerable signifi cance of having today (and in the future, more so) effective algorithms of 
mathematical programming, for example, that of Moore and Doherty (2006), for estimating values of 
very high-order parameter vectors in computationally expensive models. Given such freedom, the 
essential point is not to match simulated and observed behavior at any cost, such as chaotic variability 
and utter absurdity in the resulting estimates of all the many elements of α(ti, sj). Rather, recalling the 
kinds of evidence unearthed in Figures B2.3 and B2.4 above, it is to employ the available algorithms to 
interpret the variability in α(ti, sj) in order to modify the structure of the model, hence to arrive at the 
conclusion of a posterior model (Mposterior) in which no such variability in the parameters of that fi nal 
structure can be demonstrated as signifi cant. In short, the prior status of substantial variability in α(ti, 
sj) is systematically reduced to an essentially invariant vector α (in Mposterior).
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1997; Dohan and Whitfi eld, 1997; Whitfi eld and 

Dohan, 1997; Schröder and Seppelt, 2006), and data 

mining (White et al, 2005), has been barely apparent.

Similarly, little mention has been made of the 

framework of agent-based and individual-based models 
(IBMs; Grimm et al, 2005), essentially because matters 

of system identifi cation have not been prominent in 

studies of fi eld observations with such models. But 

let us recall our discussion elaborating upon Popper’s 

three Worlds as an extension of Lewis’s philosophy on 

the growth of knowledge (our over-arching Challenge 

# 0). At the very beginning of this Paper (in Chapter 

1.1), this was expressed:

[U]nderstanding — that is, assimilation of 

material into an appropriate mental structure 

(or mental model) — may derive increasingly 

from the belief that the virtual computational 

world (Popper’s World 3) has been founded 

upon true and correctly applied theories at 

the micro-scale and does not generate broad, 

macroscopic, qualitative predictions in 

obvious, absurd discord with whatever can 

be observed of the real thing in the physical 

world (Popper’s World 1).

Our present Challenge # 7 entails quintessentially this 

question: What should we do if there is such obvious, 

absurd discord? IBMs naturally embrace this tension 

between constituent rules cast at the micro-scale of 

an individual in a species and collective, macroscopic 

pattern, as Railsback (2001) notes. What then should 

be the systematic procedure for demonstrating 

inadequacy of a constituent rule, and unequivocally so; 

and how should that rule be revised and re-expressed 

in moving from a prior to a posterior candidate IBM 

in less absurd discord with the observed pattern of 

behavior in the fi eld?

Th e more eff ective amongst the many possible 

responses to Challenge # 7, therefore, will be those 

benefi tting from pooling the experience of these 

hitherto largely separate sub-disciplines and their 

respective algorithmic heritages, and promoting their 

cross-fertilization in the future. Such a view is indeed 

adumbrated in Clark and Gelfand (2006).

Departing in that direction, therefore, consider the 

following. Th e “acts” of system identifi cation have 

conventionally been articulated within just the space 

of the system’s and model’s outputs, y, where the curve 

should be seen to pass through the dots. In this space, 

we know that the familiar theory-based models tacitly 

dominant in our discussion of discovery and learning 

can readily be found to suff er from a lack of model 

identifi ability. Unambiguous interpretation of the data 

is not possible. Th e data-based models of Statistics, 

the antithesis thereof, are derived directly from the 

“data”, deliberately with no prejudices about the “set 

of concepts” that might in due course explain the data. 

Th ey are well identifi ed, using presumed objective 

methods of statistical inference. Yet customarily they 

are believed incapable of supporting a satisfactory 

theoretical interpretation of the observed behavior they 

demonstrably replicate.

Th at conventional perception is changing, driven on 

the one side by the ideas of  “data-based mechanistic 

modeling” of Young (1998) and Young and Ratto 
(2008). Th e essence of the dynamic behavior of the 

identifi ed realizations of these models can frequently 

be encapsulated in simple macro-parameters (β), such 

as the system’s time-constant and steady-state gain. Th e 

essence of the various parts of the dynamic behavior of 

the theory-based models can similarly be encapsulated 

in identical terms. Th us, instead of supposing that 

theory will be entirely successfully confronted with 

data in the space of y, by way of evaluating the validity 

of that theory, features of the macro-parameters of the 

theory-based model can be juxtaposed with those of 

the data-based model, and conclusions drawn from 

this juxtaposition in the space of β (about how theory 

diverges from observation). Along this continuum of 

transformations of “information”

Th eory  Th eory-based model  

Macro-parameters (β)  Data-based model  Data

the goal is to deduce useful insights about the 

relationship between theory and data, as refl ected in 

their shared macro-parameters space (Lin and Beck, 

2007b).

Th is continuum of transformations will readily and 

convincingly appear distanced from the immediacy 

of the (very) public debate over climate change and 

hurricane intensity (Mooney, 2007). Yet Mooney 

structures his book around those characters (scientists) 

promoting empiricism over theory, who plead for 

“the data to speak for themselves”, and those who 

promote theory over empiricism. Th us he sculpts 

(with seemingly little literary license) the essential 

diffi  culty of reconciling empiricism with theory, and 

the attaching computational complexity of VHOMs, 

about which such controversy has boiled: theorists 
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standing at the point of “Th eory-based model” in the 

above continuum; empiricists mustered at their “Data” 

station; and no apparent meeting of minds anywhere in 

between. In less literary terms, that essential diffi  culty 

has to do with the vastly diff erent orders of magnitude 

of the data bases to which we have had access — the 

orders and samples of [u,y] being customarily small 

— and these VHOMs, with high-dimensional state (x) 

and parameter vectors [x,α]. It is akin to looking at the 

world and trying to comprehend it through a pair of 

binoculars, with one eye-piece a microscope, the other 

a telescope.

Focusing more constructively, then, on the right-hand 

end of this continuum of transcriptions, Figure 6(a) 

(essentially the “Data”), tells us something about the 

topographic control on climate-induced inter-annual 

vegetation variability over the US (White et al, 2005). 

Figure 6(b), “mined” from the “Data” using analysis of a 

suite (or tree) of regression relationships, typifying thus 

a “Data-based model”, tells us something else. Th is we 

only but imagined earlier as “the archetypal Statistician 

interpreting the data, using the artful visualizations of 

the self-organizing maps of data-mining”, when we were 

speculating on the novelty to arise from introducing the 

environmental cyber-infrastructure in the context of 

Challenge # 2 (in Chapter 2.2). Now this manifestation 

of that “something else” should provoke novel insights 

of a kind not prompted by Figure 6(a), in the mind 

of the archetypal Terrestrial Ecologist (here), “who 

can proff er the hypothetical conjectures on why the 

correlation or curious anomaly is occurring”. Indeed, 

running our eye along the foregoing continuum from 

right to left , White et al (2005) themselves conclude that:

Th ese fi ndings suggest that the representation 

of vegetation dynamics in existing climate 

models, which do not incorporate [variability 

induced by topography], may be inadequate.

Insights of a similar nature from exploiting the 

continuum of transcriptions, in eff ect, are apparent in 

the work of Young and Parkinson (2002) on the global 

carbon cycle, as too in the work of Machu and Garçon 
(2001), who use wavelet analysis to enquire into the 

nature of phytoplankton distributions in the Agulhas 

Current off  the south-western coast of Africa. Besides 

reconciling the extracted and distilled properties of 

models from rather diff erent disciplinary traditions, 

such as those embodied in the “Macro-parameters (β)”, 

the key is that each transcription along the continuum 

should prompt questions that would otherwise not have 

been asked.

In a similar vein — in order to realize the “radical 

change of perspective” of their earlier work (Gupta et 

al, 1998) — Gupta et al (2008) propose that Lewis’s 

“acts” might more fruitfully take place in the richer 

domain of what they call signatures (pattern extracts) 

and indices (pattern properties), i.e., at one or two 

levels of encryption removed from the conventional 

space of y. In other words, model-referenced patterns 

are to be reconciled with data-referenced patterns, as 

a supplement to the more familiar “acts” of system 

identifi cation in the space of y alone. Th e allusion, albeit 

inadvertent, to the “pattern-oriented” approach to IBMs 

of Grimm et al (2005) should not be allowed to pass 

without notice. And not least because Schröder and 

Seppelt (2006) are advocating bridging not just the one 

span of process-pattern (constituent micro-scale rule; 

collective macro-scale behavior), but also that of the 

heterogeneous traditions in modeling hydrology and 

modeling landscape ecology.

In the struggle to attain the broader perspective in 

responding to Challenge # 7 lies thus the genesis of the 

kind of synthesis across previously disparate schools 

of thought and forms of model that ought to make the 

whole of the procedure more than the classical sum 

of its parts. System identifi cation is a forensic science 

in which claiming the elusive “truth of the matter” is 

unlikely to yield to dogged, blinkered application of but 

the one approach alone.

Supportive Soft ware Environment: Accommodating 

VHOMs and HVHQ Data

As much as in its unforgettable expression of the 

“tyranny of scales”, so the NSF blue-ribbon committee 

on Simulation-based Engineering Science (SBES) 

identifi ed “Th e Emergence of Big Data in Simulation 

and the Role of Visualization in SBES” as another of its 

six core issues (NSF, 2006). What drove the committee 

to this conclusion were issues primarily of handling 

uncertainty, as follows (NSF, 2006):

For example, uncertainty quantifi cation, a 

key component of SBES, will require data sets 

many orders of magnitude larger than those of 

traditional deterministic computing.

Th en there is the issue of interpreting the results 

of the simulation itself, a problem that can 

involve gigantic data sets.
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Moving back and forth along the continuum of 
transformations of information. Upper panel (a): 
“Data” on the topographic control of climate-induced 
inter-annual vegetation variability over the US. Lower 
panel (b): outputs from a “Data-based model” mined 
from the “Data” of (a). Reprinted with permission 
from White et al (2005).

(a)

(b)

Figure 6
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As we work to harness the accelerating 

information explosion, visualization will be 

amongst our most important tools.

Visualization research must continually 

respond to and address the needs of the 

scientifi c community. For example, the ability 

to visualize measures of error and uncertainty 

will be fundamental to a better understanding 

of three-dimensional simulation data. Th is 

understanding will allow the validation of new 

theoretical models, improve the interpretation 

of data, and facilitate decision-making. With 

few exceptions, however, visualization research 

has ignored the need for visual representation 

of errors and uncertainty for three-dimensional 

visualizations. We need to create an SBES 

visualization framework for uncertainty and 

to investigate new visual representations 

for characterizing error and uncertainty.

Th ese views are broadly shared with those of the 

committee investigating the role and needs of sensor 

technologies within the Environmental Observatory 

initiatives, who observed that “modeling and 

visualization tools are critical” (NSF, 2005).

“Big data”18 occur prodigiously in applications of the 

algorithms of fi ltering theory and recursive estimation, 

with their various high-dimensional estimation error 

variance-covariance (and other) matrices propagating 

through the discretized time-space continuum — the 

kinds of uncertainties of which the SBES committee 

writes. Th e matrices must be propagated in addition to 

the like propagation of input, state, parameter, and output 

vectors. So why should visualization be highlighted 

in this manner in the context of Challenge # 7 and in 

solving, in particular, the problems of model structure 

identifi cation? Our response is this: because learning, 

discovery, and the forensic science of model structure 

identifi cation, are all about the highly condensed 

visual apprehension of the myriad diagnostic facets of 

the comparisons and juxtapositions entailed therein, 

especially in complex multivariable situations of HVHQ 

data and VHOMs. How indeed should we reconcile a 

VHOM such as that of Figure 4 with any corresponding 

HVHQ data of the kind shown in Figure 2, or those of the 

GIS maps of Figure 6?

18  Th e “big data” to which the SBES committee refers 
are clearly not identical to the “data” of Lewis’s schema 
for the growth of knowledge, since they are dominated by 
numbers generated from a computer, without having any 
direct association with the observed behavior of the real 
system.

We need hardly be reminded of the startling expansion 

over the past few decades in our capacity to simulate 

the behavior of systems, in theory, in ever more detail 

and completeness on the computer. Likewise, the 

substantial impact of the EOs and environmental 

cyber-infrastructure in expanding our technical 

capacity for observation, i.e., the volume and quality of 

data streams, is obvious. By comparison, there has been 

no advance in the capacity of the human brain to juggle 

with a huge entanglement of computational estimates 

and observed facts — no advance in our capacities for 

lateral thinking, as we have already said — in order to 

reconcile bundles of obscurely and obliquely discerned 

anomalies, where data and theory seem to diverge, and 

not through the action of spurious chance occurrences. 

Imagine what is to be supported: reconstruction 

in a computational world of a complex assembly of 

experimental tests of multiple, constituent hypotheses; 

which hypotheses are of varying prior strengths, 

irreducible and impossible to isolate clinically from 

the whole for examination one by one as singlets; and 

whose observable causes and consequences all interact 

with each other.

What is called for, above all, is succinct visual 

representation of the structure of the model: probably 

not along the lines of the animation soft ware of Figure 

3; more along the lines of animating the branch-node 

network of Figure 4; and with the succinctness of the 

compression achieved through the enormous visual 

complexity of color, movement, and animation of the 

model’s structure. Visualization is necessary just as 

much for the “acts” of system identifi cation as it is 

(already) for the “data” and for the “set of concepts”. It 

may take the form of that for the ELAM of Goodwin 

et al (2006) or the IBMs of Grimm et al (2005). It may 

be as familiar as the computer graphics of games, 

fi lms, and the scientifi c reconstruction of history and 

the imagination of future threats (for the television 

programs of the History and National Geographic 

channels, for instance). In Box 3, however, an argument 

is developed for taking the conceptual visualization 

introduced in Box 2 and propelling it towards what we 

can already fi nd in the soft ware domain of molecular 

graphics.

Th e need has been long-standing: for the kind of 

soft ware environment enabling rewiring of the 

constituents within the whole of the model, almost as 

quickly and easily as the serendipitous thought surfaces 

in the brain; for support of the “tinkering paradigm” of 

the on-line dialog between our archetypal Statistician 

and Marine Ecologist (of Challenge # 2 above); and for 
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BOX 3

Structural Change

Animating Flexure and Collapse of Model Structure
in Lewis’s Acts of System Identifi cation

In Box 2 the conceptual branch-node network diagram of Figure B2.5 conveys an “artist’s impression” of a 

model’s structure, representing there a prior candidate model structure (Mprior) with its apparent failings, 

as a step en route to that of an improved posterior structure (Mposterior), all in the overall process of model 

structure identifi cation. In discussing (in Chapter 2.6) the ever-alert environmental cyber-infrastructure, 

poised to enact adaptive sampling and faced with acknowledging the associated need of an “adaptive 

model” (in response to Challenge # 6), we introduced the idea of a model whose structure would change and 

evolve with time, from M(t -) to M´(t +). The threads of these two arguments establish a sense of fl uidity in the 

structure of a model, which we shall elide with the ideas of movement, motion, and therefore animation. 

Figure B3.1 realizes three snapshots in time (t) of such motion, or structural change in the model.

Alternatively, supposing our understanding of the behavior of the given environmental system could be 

resolved to some greater degree of refi nement, the three snapshots of Figure B3.1 might be subsumed as 

merely a sequence of predominant facets of some more complete model, such as that of Figure B3.2 (just as, 

indeed, in the pictorial representations of the collapse of coastal ecosystems in Jackson et al, 2001). Coloring 

of the branches of Figure B3.2 follows the previous logic of that introduced in Box 2: with blue representing 

a secure, confi dently supported constituent hypothesis, with relatively little uncertainty attaching to the 

associated model parameter estimates; and red signaling the opposite, i.e., a constituent hypothesis that 

has been stressed to the point of failure in the act of reconciling the candidate structure with the data. 

Animation would permit changes of color over time. And to color could be added the dimensions of fl exure, 

deformation, and oscillation in these branches pinning together the nodes (state variables) of the structure.

The purpose of Figure B3.2 in the present argument is to establish some conceptual complements of Figure 

B3.1. Given the two, and the previous liberal use of these metaphors in Environmental Science (Beck, 2002), 

little further imagination is needed to proceed to Figure B3.3, as found in the Biomedical Sciences. If the 

two facets of animation and visualization in Figures B3.1 and B3.2 could be brought together in realizations 

such as those of Figure B3.3, then surely it could also be that the software platforms of molecular graphics 

have a role to play in model structure identifi cation in responding to Challenge # 7. For we already know that 

one of the algorithmic frameworks of Box 2, that of recursive estimation and the RPE algorithm, in particular, 

generates streams of digital information — on parameter estimates, variance-covariance matrices, and the 

like — suffi cient to color and animate Figure B3.2 in a systematic manner, as its attaching “set of concepts” is 

reconciled with the “data”, time-frame by time-frame.

Now imagine our colored and animated model structure as a three-dimensional object on the computer 

screens of our archetypal Statistician in city offi ce and Marine Ecologist aboard ship at sea. And suppose 

the cyber-infrastructure enables them both simultaneously to freeze a frame in the fi lm, arresting it at the 

point of detecting a red buckling to the rear of the model structure, rotating the object, and cutting out the 

buckled portion of the structure for closer inspection. Imagine, in fact, Figure B3.4. We ought indeed then to 

have the beginnings of the “tinkering paradigm” called for in our earlier response to Challenge # 2.
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BOX 3

Structural change: snapshots for three instants in 
time capturing evolution in the structure of the 
model. Over time, from one snapshot to another, 
it appears some constituent parts of the model’s 
structure have fallen away, from signifi cance 
into insignifi cance, while others, once considered 
insignifi cant (not worthy of inclusion in the model’s 
structure), have arisen to assume considerable, if 
not dominant, signifi cance.

Figure B3.1

t -

t

t +
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BOX 3

Figure B3.2
Towards model structure identifi cation: three-dimensional representation of the model structure (previously depicted merely in 
two dimensions in Figure B2.5 of Box 2).

Figure B3.3

The benefi ts of serendipitous 
happenstance: image downloaded in 
2004, dealing with the simulation of 
changes over time in the structure of a 
biological molecule. Citing authorship of 
this fi gure has proven challenging. It can 
no longer be located on the web.
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BOX 3

Towards model structure identifi cation through animation of fl exure and collapse of model structure: (a) frozen frame of the 
animation as the analyst fi rst detects a red web of faulty behavior to the rear of the three-dimensional model structure, as the 
model is in the process of being reconciled with a recorded span of fi eld data; (b) same frozen frame as (a) but rotated in the 
three-dimensional space of the visualization of the model’s structure in order to reveal more clearly the failing constituents 
(hypotheses) of the model’s structure.

Figure B3.4

(b)

(a)
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the kinds of scientifi c visualization that will enable the 

serendipitous thought to occur sooner rather than later. 

Much of what is called for in responding to Challenge 

# 7 is likely to depend on an essential element of such 

serendipity, something which by defi nition defi es 

full automation and systematization in any form of 

environmental cyber-infrastructure.

2.8 Predictive Science and Uncertainty

Everything, technically, is uncertain: u, M, α, and y. 

And according to the SBES committee, uncertainty is 

clearly a signifi cant matter, even in the more secure, 

“artifi cial”, constructed world of engineering (the built 

environment). Given this, the important question 

is not so much that we should be concerned to take 

account of uncertainty, for once was the time when 

technically we were analytically and computationally 

largely unable so to do, but that we should be able to 

establish when such uncertainty, be it great or small, 

might be important. Looking back, it is important for 

the uncertainty and ambiguities in explaining past, 

observed behavior to be reduced to insignifi cance, 

expunged, and the explanation rendered as founded 

upon just the singular “set of concepts” alone. Peering 

ahead, it is important to be able to discern where 

forecasts of possible future patterns of behavior in the 

system can be relied upon, and where not.

As we introduce our next grand challenge, aligned 

with the second of our textbook problems, of  “given 

M and u fi nd y”, but not divorced from the prior 

problem of “given u and y fi nd M”, our need is to 

pinpoint aspects of accounting for the various facets 

and types of uncertainty for which no solutions are yet 

readily apparent. For this — shortly to be expressed 

as Challenge # 8 — our focus will be on uncertainty 

in knowledge and its consequences with respect to 

making statements about future behavior. Challenge 

# 10, which is closely related, will subsequently be 

addressed to those consequences in the more pragmatic 

context of decision-making and decision support in 

environmental management. Th e former views the 

issue of prediction from the perspective of the scientist 

as stakeholder, the latter from the perspective of the 

policy-maker as stakeholder.

Moorcroft ’s Question

In his review paper, Moorcroft  (2006) asks: “How Close 

Are We to a Predictive Science of Th e Biosphere?”. Th e 

science plan for NEON released in September 2006 

observes that “[m]oving ecology to a predictive science 

at the regional to global scale will require a coordinated 

program of theory development, testing, and refi ning” 
(NEON, 2006). Becoming a “predictive science” is 

thus a noble, widely shared goal; and its attainment, in 

respect of such massively complex, large-scale systems, 

must rest upon achieving what the community of peer 

scientists will judge to be secure, reliable models.
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Moorcroft ’s response to his own question, which 

touches upon a number of the grand challenges in this 

White Paper — from the role of models in the process 

of core scientifi c discovery, i.e., from Challenge # 1, 

onwards — entails the following:

Th at there be no obvious, absurd discord 

between the “data” and the “set of concepts”, 

echoing thus all of the preceding discussion 

under Challenge # 7.

Th e “data” for Moorcroft  will be an eclectic synthesis of 

cross-scale fragments, blocks, and patches of observed 

behavior spanning the time-space-biogeochemical 

continua (echoing thus the discussion of ecoinformat-

ics in Jones et al (2006) under Challenge # 2). His “set 

of concepts” are to cover subgrid-scale heterogeneity in 

the community of plants and their cross-scale dynam-

ics. Omission hitherto of these features, he argues, has 

been responsible for (Moorcroft , 2006)19

our current understanding of biosphere-

atmosphere feedbacks [being] a collection of 

interesting, but largely untested, hypotheses 

for the future state of terrestrial ecosystems 

and climate.

But as we now know from the extensive discussion of 

the challenges of reconciling complex VHOMs with 

the anticipated yield of HVHQ data from the EOs, the 

archetype of the single curve of the model traveling 

demonstrably through the dots of the data can 

conceal a host of ambiguities and uncertainties, hence 

a plurality of interpretations. As Moorcroft  (2006) 

expresses it:

[A]lthough most models can replicate inferred 

patterns of potential vegetation and seasonal 

to interannual patterns of productivity, they 

diverge from each other signifi cantly in 

their predictions of ecosystem composition, 

structure and functioning under novel climates.

And in this he epitomizes the challenge we are 

approaching.

If the uncertainties attaching to the various models 

19  At the scale of the spatial grids presently employed 
in models of the global atmosphere, biological cover on the 
earth appears as the uniform, monotone “canopy as big-leaf” 
(Moorcroft , 2006).

as a result of replicating (uncertain) past observed 

behavior had been evaluated — for this is not 

disclosed in Moorcroft ’s discussion — and then 

accounted for in the predictions, the signifi cance, or 

otherwise, of the divergence amongst the predictions 

(and of the models) could have been established. 

Furthermore, once qualifi ed by such an account of 

the propagation of this uncertainty into the bundle 

of predictions, discerning where divergence is 

statistically signifi cant or not should be revealing of 

the points of relative strength and weakness amongst 

the constituent hypotheses in the competing models. 

Accordingly, we can see how solving our two textbook 

problems, of identifi cation and prediction, are in this 

way intertwined (Beck, 1987).

Looking to explanation of the past, how then should 

we judge whether the predictive science base is 

unblemished, without fl aws? Looking to the future, 

how do we insure use of our forecasts against the 

propagated consequences of these blemishes and 

fl aws, in order to be in any way confi dent in making 

statements about behavior in the future, especially 

behavior radically diff erent from that observed in the 

past? For it is towards this objective — of being reliable 

in inferring such novel behavior — that becoming a 

predictive science is strongly inclined.

Sound Science

“Being reliable” is indeed the key — as may also be 

reiteration of our call (in Chapter 1.1) to professional 

philosophers of science to become involved in 

the particular challenges of developing models in 

Environmental Science.

On the one hand, adhering to what is understood 

as the paradigm of “sound science” (Fisher, 2007), 

uncertainty is, in principle, capable of being eliminated 

in due course, i.e., uncertainty in our knowledge bases 

is essentially a transient phenomenon. According to 

Funtowicz and Ravetz (1990), reliability in the status of 

the relevant science would evolve through the following 

stages:

from “no opinion” with no peer acceptance;

through an “embryonic fi eld” attracting low 

acceptance by peers;

“competing schools”, with medium acceptance;
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a “theoretically-based model” accepted by “all 

but rebels”;

and on, in the end, to an “established theory” 

accepted by “all but cranks” (expressions 

quoted are those of Funtowicz and Ravetz).

In our domain of formal, computational modeling, this 

progression might be mirrored as:

from perceived correlations within the data, 

derived from applications of techniques such as 

data mining, self-organizing maps, regression 

analysis, and the like;

to the sets of rules of fuzzy logic and Bayesian 

nets;

lumped-parameter ordinary diff erential 

equations, or several such model structures 

(with/without time-varying parameters);

to culmination in sets of partial diff erential 

equations, with invariant parameters (without 

stooping to the expedient of estimation 

through model calibration).

In this climax, a single and secure “set of concepts” 

should unquestionably have been achieved (in Lewis’s 

terms).

In the latter stages, what drives matters is the quest 

for successively eliminating model parameters as 

temporary “parking places”, as it were, for accounts of 

behavior regarded for the time being as too uncertain, 

too variable, too immature, or lying outside the 

“scale window” of what can be included in the model 
(Lermusiaux et al, 2006b). Th is is just as Moorcroft  

(2006) anticipates:

Th e plant functional types represented 

within coupled DGVMs [Dynamic Global 

Vegetation Models] have fi xed traits, such as 

their maximum photosynthetic rate and their 

patterns of carbon allocation between leaves, 

stem and root tissues. By contrast, empirical 

studies of terrestrial ecosystem responses to 

climate change have documented widespread 

evidence of plant acclimation to elevated levels 

of CO
2
. [emphasis added]

Th e trait (parameter), currently treated for expedience 

as invariant, might better be regarded as temporally, if 

not spatially, varying, unless and until that parameter 

can be replaced by a more mature model, with a 

higher resolving power, wherein the expedient trait is 

acknowledged as crudely approximating interactions 

amongst several state variables at the more refi ned 

level of understanding.20 Th is quest, as Popper puts it, 

is “unending” (Popper, 1976) — notwithstanding the 

ambition of enterprises such as the Human Physiome 

Project (Hunter and Borg, 2003), in descending to 

the ever smaller, or Earth System Analysis, tending 

towards the opposite end of the scale.

Current DGVMs, we could say, are subject to 

structural error/uncertainty, or epistemic uncertainty, 

i.e., uncertainty in the science and sets of concepts 

underpinning the model. If they were to attain 

the status of the predictive science in Moorcroft ’s 

question, the blue-ribbon committee on Simulation-

Based Engineering Science (SBES; NSF, 2006) would 

nevertheless lead us rightly to expect them still to 

be subject to aleatory uncertainty — uncertainty, 

that is, attaching primarily to the parameterization 

of an otherwise agreed structure for the model, 

beyond dispute.21 Until such a status is attained, what 

computational account (rhetorically) is to be given of 

the structural error/uncertainty?

At bottom, adoption of the sound-science paradigm 

expects progression in but one direction, with no 

substantial setbacks, except when the relevant science 

undergoes a Kuhnian shift  of paradigm (Kuhn, 1962).

Deliberative Problem Solving

On the other hand, there is the paradigm of “deliberative 

problem solving”, in which epistemic uncertainty 

is considered ineluctable (Fisher, 2007). Th is can be 

portrayed as having much of a Bayesian spirit about it. 

Beginning at some point in an iterative cycle, we:

20  Th e “mixing-layer depth factor”in ocean science 
models seems likewise a candidate expedient, subject to tem-
poral variability, and capable in principle of more satisfac-
tory representation (Lermusiaux et al, 2006b), just as was the 
ratio of chlorophyll-a to carbon in phytoplankton biomass in 
the previously quoted work of Spitz et al (2001).

21  To be clear about the use of terms here, the word 
epistemic is understood as “of, relating to, or involving 
knowledge or the act of knowing”, whereas aleatory denotes 
“dependent upon chance, luck, or an uncertain outcome”. 
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(i) identify some key sources of uncertainty;

(ii) explore the nature of experiments 

designed to reduce these — at a mature 

stage, aft er several cycles, some such 

designs of experiments will be using 

models for this purpose (just as we have 

seen in Chapter 2.6; Challenge # 6);

(iii) quantify and record the uncertainty 

attaching to the model (M), both 

parametric and structural, as it is 

reconciled with the resulting data;

(iv) account for the propagation forward 

of this posterior model uncertainty in 

the making of predictions (and come 

to a current view on the problem being 

solved); and

(v) rank the sources of uncertainty 

compromising the reliability of those 

predictions — hence, to embark on the 

next cycle.

Th e cycle is that of identifi cation-prediction-

identifi cation-prediction, and so on. Th rough it runs 

the continuous thread of accounting for uncertainty.

It is possible, in principle, for confounding data 

to cause the posterior model uncertainty, aft er 

identifi cation, to be greater than that with which 

any given iteration began. System identifi cation, as 

we have discussed it in response to Challenge # 7, 

assumes now not merely the goal of explaining past 

behavior without ambiguity, but also the purpose of 

mapping the loci and extent of that which is more or 

less uncorroborated in the model. Th e resulting map 

is a faithful “fi ngerprint” of any and all the distortions 

wrought in the model as it is reconciled with the data. 

And this fi ngerprint of uncertainty determines, in part, 

the reliability of the predictions generated from the 

model (Beck, 1987).

It is not that this second paradigm does not seek utter 

clarity in explanation and prediction. Rather it seeks 

quality in this quest, presuming uncertainty cannot be 

made negligible, hence eliminated from consideration, 

not even when having attained the partial diff erential 

equations that are the target end-points of the sound-

science paradigm. In fact, since this is precisely the 

argument Funtowicz and Ravetz (1990) wish to make, 

care must be taken not to make their thinking captive 

of just the sound science paradigm. Furthermore, all 

of us would want to see our science progress from no 

opinion to a fully fl edged theory. If our nascent models 

are expressed in the rules of fuzzy reasoning and 

Bayesian nets, for example, uncertainty is axiomatic. 

But somewhere along the line of the sound science 

paradigm — for it is unclear whether there are the 

procedural and algorithmic means for graduating these 

forms of nascent models systematically into the forms 

of ordinary diff erential equations — models emerge 

without any formal account of uncertainty.

Being open about such uncertainty should be 

celebrated: in illuminating where our explanations 

and predictions can be trusted and in proceeding, 

then, in the cycle of things, to amending their fl aws 

and blemishes. And so we come to expressing our next 

grand challenge.

Challenge # 8:

Recognizing the inevitably fl awed and 
uncertain conceptual foundations of 
many environmental models — while 
acknowledging the possibility of natural 
features of biological acclimation, even 
evolution, over a longer-term horizon, 
especially in response to the introduction of 
invasive species, and the high likelihood of 
continual adaptation in the behavior of many 
types of environmental system — how are 
structural error/uncertainty and structural 
change in these models to be identifi ed, 
quantifi ed, rectifi ed, and accounted for (in 
the propagation of prediction errors and the 
making of decisions)? What new schemes of 
generating environmental foresight will be 
needed to cope with these challenges?

What, in fact, must go into making environmental 

science a predictive science (a strong form of 

“environmental foresight”)? What might be the role of 

the Environmental Observatories, and the data they are 

to generate, in facilitating this?

Computational Analyses of Uncertainty and Sensitivity

In 2003, scientists and engineers from a unusually 

large number of US federal government agencies 

came together for a Workshop on “Uncertainty, 
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Sensitivity, and Parameter Estimation for Multimedia 

Environmental Modeling” (Nicholson et al, 2004). 

Uncertainty, whose analysis had historically been tied 

to the making of predictions, was thereby coupled 

to parameter estimation, i.e., to the prior process of 

identifying the model in the fi rst place. Th is, then, 

was an embodiment of the Bayesian spirit of the 

identifi cation-prediction cycle — recognition too of 

the role of past observations (and their uncertainties) 

in infl uencing the propagation of uncertainty in 

predictions of behavior in the future.

Th e titles of some of the programs prominent under 

the inter-agency collaboration hosting the Workshop 

convey much the same spirit: specifi cally, that on Joint 

Universal Parameter IdenTifi cation and Evaluation of 

Reliability (JUPITER) and its manifestations in the peer-

reviewed literature (Doherty and Johnston, 2003; Poeter 

and Anderson, 2005; Gallagher and Doherty, 2007). 

Given widespread acceptance of this Bayesian outlook 

today — indeed, its prominence in some fi elds, notably 

Hydrology (source of the procedure of Generalized 

Likelihood Uncertainty Estimation (GLUE; Beven 

and Freer, 2001)) — the intellectual eff ort originally 

invested in making such a connection between prior 

identifi cation, uncertainty, and subsequent prediction 
(Beck, 1987) seems now superfl uous.

Across the disciplinary domains germane to the EOs, 

the most expansive penetration of applications of 

the relevant computational methods of Uncertainty 

Analysis and Sensitivity Analysis (UASA) to higher-

order, computationally expensive models is clearly 

apparent in Hydrology and the Ocean Sciences 

(Lermusiaux et al, 2006b). It is especially prominent in 

matters aff ecting systems of groundwater: in respect of 

bioremediation of contaminant plumes (for example; 

Mugunthan and Shoemaker, 2006); and in accounting 

for the exceptionally long-term, future behavior of such 

segments of the environment in the vicinity of storage 

facilities for high-level radioactive wastes, for example, 

over the scales of 103 and 106 years (Helton et al, 2006; Ye 

et al, 2007; see also the reference textbook of Saltelli et al, 

2000).

From a slightly diff erent conceptual and algorithmic 

heritage, but nevertheless heading towards the 

handling of uncertainty in very high order models, 

are some contemporary extensions of the seminal 

work of Hornberger and Spear (1981) on Regionalized 

Sensitivity Analysis (RSA)22. Th at sub-population of 

candidate parameterizations of the model, screened 

out under gross uncertainty, as generating acceptable 

matches of qualitative, subjective experience of past 

observed behavior (the signature feature of RSA), 

constitute the sample of candidate parameterizations of 

the model with which to generate forecasts of behavior 

in the future (every bit as much a characteristic feature 

of the Bayesian outlook). Th e extensions of RSA, 

currently tailored to an ecological foodweb model of 

modest order (Osidele and Beck, 2003, 2004), are to 

be incorporated into the FRAMES soft ware system 

for human and ecological risk assessment constructed 

around a multi-media model (3MRA; Babendreier and 

Castleton, 2005), unquestionably a model meriting the 

assignation of being a VHOM.

To summarize, the ambition of attaining here 

computational facility in addressing and visualizing 

uncertainty in the very highest orders of models, 

is clearly shared with the recommendations from 

the NSF’s blue-ribbon committee on Simulation-

Based Engineering Sciences (NSF, 2006). Likewise 

broadly shared, of course, is the interest in having 

computational effi  ciency accompany computational 

facility, especially in the now dominant sampling-

based schemes of accounting for uncertainty23, as 

reported upon in Helton et al (2006), appropriately 

enough in a journal on reliability engineering. Th ere 

is also a self-declared aim (Gallagher and Doherty, 

2007) that developments in the enabling soft ware of 

computational UASA become generic, i.e., applicable 

whatever the source of the model and, we would 

commend, compatible with protocols such as OpenMI 

(of which mention was made in Chapter 2.2).

Given a model M, even a very high order model, 

we may conclude it is possible to compute the 

22   To which GLUE, as well as the set-membership 
approach of Keesman and van Straten (1990), owe much of 
their inspiration.

23  Two decades ago the fi eld of uncertainty and 
sensitivity analysis was greatly concerned to compare the 
performances of fi rst- and second-order analyses of error 
propagation with those of sampling-based schemes (Beck, 
1987). Today those approximate methods appear prominent 
primarily in but the prior analyses of model identifi ability 
(and experimental design) discussed above in Chapter 2.6 
(for example, Brun et al, 2001; Omlin et al, 2001), with the 
notable exception of Gallagher and Doherty (2007), who 
report on a comparative study in the analysis of uncertainty 
using both a fi rst-order error analysis and a Markov Chain 
Monte Carlo (MCMC) sampling procedure.
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uncertainties attaching to that model’s parameters 

(α), as a result of reconciling the model with the data, 

and compute the consequences thereof in terms of the 

uncertainties attaching to the model’s predictions (y). 

Hence, in principle, the specifi c loci of the strengths 

and weaknesses in that complex web of explanatory 

hypotheses, as well as in the bundle of predictive 

statements, can be illuminated, not left  concealed, 

with therefore latent consequences. Should this help in 

addressing the problem of the (historical) impotence of 

the fi eld data in discriminating amongst those models 

and their constituent hypotheses that are to be relied 

upon in making predictive statements about possibly 

radically diff erent types of behavior, and those that are 

not? It ought.

Put less technically, more philosophically, and in the 

words of Funtowicz and Ravetz (1990): is exploration 

of the future to be dogged (or enhanced) by a plurality 

of plausible, candidate models under a regime of 

competing schools of scientifi c thought? In fact, could 

those candidate models be supported and promoted 

even as sharply contradictory certainties? Whatever the 

answers to such questions, the computational capacity 

of accounting for the propagation and modulation of 

uncertainty through the identifi cation-prediction cycle 

is ready to be put to work.

Foresight: Coping with Structural Error/Uncertainty 

and Structural Change

Until environmental models attain membership of 

the set of predictive sciences, for they are yet falling 

short of this goal, what computational account is to 

be given of the structural error/uncertainty in them, 

in exploring possible patterns of behavior in the 

future? How are we to cope with such uncertainty 

in our conceptual knowledge base? When making 

predictions, what should be done about the recognized 

inadequacies of the fi xed, macroscopic traits currently 

assigned to the behavior of vegetation in Dynamic 

Global Vegetation Models (Moorcroft , 2006)? Before 

delineating the beginnings of answers to these already 

substantial enough questions, let us ponder something 

of their still grander implications and origins.

In a contribution to an early text on evolutionary 

economics, Peter M Allen, a theoretical physicist who 

had worked with Nobel-laureate Prigogine on matters 

of complexity and self-organization in the 1970s and 

1980s, took stock of his perspective on models and 

prediction in environmental science, following that 

experience. In the gap between the computationally 

tractable known (the model) and the truth (reality) lies 

the diff erence, as he would argue, between the behavior 

of mechanical and evolutionary systems (Allen, 1990):

[I]f the world is viewed as some kind of 

‘machine’ made up of component parts 

which infl uence each other through causal 

connections, then instead of simply asking how 

it ‘works’, evolutionary theory is concerned 

with how it got to be as it is.

Th e Newtonian paradigm was not about this. 

It was about mechanical systems either just 

running, or just running down.

Th e key issue is centred on the passage 

between detailed microscopic complexity of 

the real world, which clearly can evolve, and 

any aggregate macroscopic ‘model’ of this.

Th e central question which arises is that in 

order even to think about reality, to invent 

words and concepts with which to discuss it, 

we are forced to reduce its complexity. We 

cannot think of the trillions of molecules, 

living cells, organisms, individuals and events 

that surround us, each in its own place and 

with its own history. We must fi rst make a 

taxonomic classifi cation, and we must also 

make a spatial aggregation.

[I]f, in addition to our basic taxonomic and 

spatial aggregations, we assume that only 

average elements make up each category, and 

that only the most probable events actually 

occur, then our model reduces to a ‘machine’ 

which represents the system in terms of a set of 

diff erential equations governing its variables.

But such a ‘machine’ is only capable of 

‘functioning’, not of evolving. It cannot 

restructure itself or insert new cogs and 

wheels, while reality can!

What Allen imagines is the possibility of the structure 

of the web of interactions, of which we conceive in our 

models, dissolving, as it were, and then re-crystallizing 

into some other structure, with a diff erent number of 

states and parameters and diff erent inter-connections 

between the states.
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Th e following are physical manifestations of Allen’s 

conceptual imagination: the acclimation of vegetation 

to future changes in climate (Moorcroft , 2006); historic 

structural change charted in the foodwebs of estuarine 

and coastal ecosystems (Jackson et al, 2001) — just as 

already imagined in visualizing a model’s changing 

structure in Box 3 (Chapter 2.7); and the structural 

adjustments to the same in river and lake ecosystems 

as a result of the introduction of exotic species (Strayer 

et al, 1999; Matthews et al, 2002). Th ey are not matters 

of evolution in its literal sense, for what Allen went 

on to ask was: can we discover the rules by which the 

system will re-structure itself? But they are signifi cant 

problems encountered in the practice of environmental 

science, and they are germane indeed to the expression 

of our present Challenge # 8.

Conceptual error, or structural error/uncertainty in the 

model, may be thought of as a measure of the extent to 

which the expression of what is “known” diverges from 

the “truth”. To reiterate from Box 2 of Chapter 2.7, it 

may be considered to have two important, signifi cantly 

diff erent dimensions: of error in the {presumed 

known} and of uncertainty about the {acknowledged 

unknown}. Addressing it as a matter of signifi cance 

has been gaining ground in recent years, and yet 

again, notably in Hydrology, in the works of Neuman 

(2003), Poeter and Anderson (2005), Beven (2005), and 

Refsgaard et al (2006) (as well as Borsuk et al, 2004). 

Broadly, these all assume a plurality, if not a multitude, 

of candidate models, M
i
, i = 1, 2, ..., m, to each of which 

can be assigned a probability — in the present — of 

that model encapsulating the truth of the matter. Th is 

probability will vary with time in the Bayesian spirit of 

the identifi cation-prediction cycle. At any point in the 

cycle, models M
i
, i = 1, 2, ..., m, with the accompanying 

distribution of likelihoods of encapsulating the truth, 

can be employed computationally in generating a 

sample of multiple bundles of predictions of possible 

behavior in the future. Our Paper has already touched 

upon this in respect of matters of adaptive modeling, 

adaptive sampling, and Environmental Observatory 

operations in the domain of the Ocean Sciences (under 

Challenge # 6 in Chapter 2.6; Lermusiaux et al, 2006a).

Th ere is a bigger picture here, however. Most of the 

foregoing has recently been brought together under 

the heading of a Bayesian Hierarchical Modeling 

framework, wherein the notion of hierarchy manifests 

itself as follows. Given the data from the EO, a posterior 

model structure (M
posterior

) can be obtained given M
prior

; 

whereupon, given M
posterior

, posterior estimates of 

the model’s parameters are computable; so that then 

(ultimately) armed with M
posterior

 and these posterior 

parameter estimates, predictions of future behavior 

(as outputs y) are calculable (Liu and Gupta, 2007). All 

this, these authors from the domain of Hydrology label 

“data assimilation”, subsuming therein much of what 

has gone before under Challenge # 7, the discussion 

of this present Challenge # 8, and a good deal of what 

is to come in the next section in respect of Challenge 

# 9. We shall choose there, however, to interpret the 

assimilation of data rather diff erently.

Looking back, with a grasp now of what it means to 

have a predictive science, we may conclude that what 

we practise as environmental modelers has yet to attain 

that noble goal. Looking back too, with an appreciation 

of the perhaps paradoxical illumination brought with 

analyses of uncertainty, the intent of these indicative 

lines of response to Challenge # 8 is this: to make 

the utmost, under uncertainty, of the diversity of 

candidate models thriving under the competing 

schools of thought, presuming that within the span of 

the distribution of these models lies somewhere the 

truth. Attempts at detecting, gauging, quantifying, 

circumventing, or reducing the gap between the model 

and the (unknowable) truth come primarily under the 

preceding Challenge # 7. Faithfully accounting for the 

consequences (for model-generated predictions) of this 

gap in our knowledge, with all its fl aws and blemishes, 

is a matter of the current Challenge.

Absent is the notion of supposing the gap will 

eventually be eliminated, notwithstanding its power 

of motivation. Not for nothing did Popper entitle his 

intellectual auto-biography an unending quest. Th ere 

will always be a need for generating foresight — a less 

strong form of “prediction” — under the presumption 

of structural error/uncertainty, within which may 

reside structural change of a kind approximating that 

imagined by Allen (1990). Th e manifesto of Beck (2002) 

(in shorter form, in Beck (2005b)) is one perspective on 

the possible forms of response to the facet of foresight 

within Challenge # 8. Th at manifesto was inspired in 

no small measure by Allen’s description of his problem; 

and it embraces approaches — part computational, part 

conceptual — exploiting the idea of parameters (α) as 

stochastic processes, i.e., varying through time-space.
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In 2010 half a century will have passed 

since Kalman published his seminal paper 

on a new approach to signal fi ltering and 

prediction (Kalman, 1960). Time enough, one 

might suppose, for real-time information processing 

and forecasting to have become a commonplace in the 

environmental sciences. It has not; and it is especially 

important to understand why this has been so. For 

the potential and scope of the EOs and accompanying 

environmental cyber-infrastructure are substantial, in 

precisely the domain of exercising “functions in real-

time”.

3.1 Assimilating Data and Processing 
Information in Real-time

Environmental Science did not want for early adopters 

of these algorithms of Kalman (and of recursive 

estimation more generally), themselves born of the 

then urgent needs of aerospace engineering. Real-

time forecasting and control in hydrological and 

water resources systems, for both surface and ground 

waters, as well as the municipal water and wastewater 

treatment facilities of environmental engineering, 

had already been the object of considerable study 

throughout the 1970s (Wood, 1980). Bennett’s original 

work on data assimilation in physical oceanography 

began in the 1980s (Bennett and Budgell, 1987).

All novel techniques emerging from applied 

mathematics and mathematical engineering tend to 

move through other disciplines as matters of fashion, 

some gaining more purchase in the new subjects 

than others. Why then has the fi eld of environmental 

science been largely unreceptive to the processing 

of information in real-time? For this is more than 

a matter of technological barriers in sensor and 

communication technologies and the physical 

infrastructure for enacting controls in real-time.

Sir Alan Harris, an eminent engineer who regretted 

the intellectual and professional separation of 

mechanical engineering from civil engineering, 

put it this way: if an object is meant to move, that is 

mechanical engineering; if it is meant to stay put, that 

is civil engineering. Control engineering, taught in 

the disciplines of mechanical engineering, electrical 

engineering, aerospace engineering, and chemical 

engineering, is about engineering the dynamics of 

change and variability in the behavior of an entity — 

“movement” in an object — aft er its conception, design 

and construction. Civil engineering, which embraces 

engineering hydrology and environmental engineering, 

has generally had little pressing need to pay attention 

to the operational stage in the life cycle of its products, 

even over the past three to four decades.

When operating a built system, monitoring how the 

state of a system changes with time in response to 

disturbance, understanding how input disturbance 

and state are related, and intervening deliberately — 

in real time — to manipulate other system inputs in 

order to maintain the behavior of the system within 

some desired pattern or bounds (or avoid some feared 

threat), are all key. In particular, when the changes 

with time are relatively rapid, some form of real-time 

data-processing and decision-making scheme becomes 

crucially important. We have already seen something 

of this in the Dynamic Data Driven Applications 

Systems (DDDAS) of Challenge # 6 (Chapter 2.6). 

With progressively increasing speeds of change, if 

not increasing complexity in the way the behavior of 

the system must be understood in order to exercise 

decision-making eff ectively, the associated schemes will 

need to become automated. Hence we have the typical 

context of real-time forecasting and control.

When the important elements of the system’s 

dynamical behavior are perceived as being relatively 

slowly changing, processing data in real-time and 

making split-second, unerring decisions seem 

irrelevant, for all practical purposes. And in that we 

can fi nd much of the reason why real-time forecasting 

and control have achieved such modest practical 

success in the environmental sciences. Th e attaching 

frustration, as well as a contemporary diagnosis of why 

this has been so, is chronicled in Beck (2005a).

Kalman, it is to be noted, published his seminal 

paper in the Transactions of the American Society 

of Mechanical Engineers. His triumph seems to have 

been so great as to have stifl ed signifi cant algorithmic 

developments for quite some time thereaft er — with 

Chapter 3: Science and Engineering In “Real Time”
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perhaps the notable exception of Ljung, (1979), who 

in fact developed a fi ltering-like algorithm, designed 

for parameter (not state) estimation, starting from a 

premise rather diff erent from Kalman’s. In the past 

decade or so, however, all manner of variations on the 

basic theme of fi ltering theory have been unleashed: 

ensemble fi lter, particle fi lter, unscented fi lter, singular 

evolutive extended fi lter, singular evolutive partially 

local extended fi lter, all of which have been enjoying 

applications across the environmental sciences, from 

the ocean sciences (Hoteit et al, 2005; Lermusiaux 

et al, 2006a; Torres et al, 2006), through hydrology 
(Moradkhani et al, 2005a,b; Drécourt et al, 2006a,b; 

Andreadis and Lettenmaier, 2006; Liu and Gupta, 

2007), and on to wildfi re propagation (Douglas et al, 

2006), terrestrial ecology (Williams et al, 2005), and 

population dynamics (Wang, 2007).

Environmental Science and Control Th eory

It is not the case that applications of the algorithms 

of fi ltering theory and the like have not been useful 

for purposes other than just pragmatic real-time 

forecasting and control. Boxes 2 and 3 of Chapter 

2.7 bear witness to this; to the legacy of the heady 

days of “youthful exuberance” characterizing early 

adoption of these algorithms in Environmental Science 

in the 1960s and 1970s. Present-day interest in data 

assimilation is signifi cant, moreover, and the associated 

algorithms thereof have a strong cultural basis in 

fi ltering theory, hence control theory. Further details 

of both — control theory and data assimilation — will 

be placed in Box 4 below, along with the concepts of 

adaptive control and adaptive management (to become 

important in subsequent Challenges). Neither has 

it been the case that, given sensors and instruments 

for observing some of the more diffi  cult attributes of 

environmental systems in real time, no interesting 

or signifi cant features of behavior have thereby been 

revealed, to challenge the knowledge bases encoded 

in contemporary models (developed essentially in the 

absence of such data).24

A large part of the problem has in fact been this: 

what exactly are the economic, policy, and socially 

relevant reasons — what are the practical incentives 

24  For over a decade (1997-2008) the Environmental 
Process Control Laboratory of the University of Georgia gen-
erated such blocks of high volume high quality (HVHQ) data 
(in real time) for the C, N, P, and oxygen behavior of rivers, 
ponds, and biological wastewater treatment plants (Figure 
2), albeit only touched upon in passing in the open literature 
(for example, Lin and Beck (2007a,b)).

— for actually needing a forecast of environmental 

quality in the short-term? Responding constructively 

to this question will be a very important part of then 

fashioning a program of research for exploiting to 

the full the distinctive and unique opportunities for 

real-time computations with models, to be aff orded by 

the advent of the EOs and the environmental cyber-

infrastructure.

All three of our textbook problems (from Chapter 

1.2) — given u and y, fi nd M; given M and u, fi nd y; 

and given M and desired, feared, and/or threatened 

y, fi nd u — may be considered under the next grand 

Challenge we are about to express. Its distinctive 

feature, as opposed to the foregoing Challenges # 8 and 

# 7, are identifi cation, prediction, and management as 

a function of time in the near vicinity of the present 

(t, let us say).25 In the sense that everything may be 

attempted in “real time”, the approaching Challenge 

# 9 cuts across much of what has gone before, perhaps 

courting duplication thereby, in particular in respect of 

Challenge # 6.

To appreciate the full extent of our next grand 

challenge, however, and the central role of M within it, 

we shall need now to appreciate more of the detail of 

Kalman’s fi ltering algorithm in the specifi c context of 

control theory, hence to appreciate too how the promise 

of data assimilation may be undermined by the security 

or otherwise of the model itself (Box 4). Under certain 

circumstances, our textbook problems may simply be 

demanding “something for nothing” or, to be precise, 

the reconstruction of too many unknowns from too 

few knowns.

As Box 4 shows, the essential role of a model M 

in assimilating observations is its capacity to 

unify interpretation of those observations across 

heterogenous scales of the time-space-biogeochemical 

continuua. Th is too is salient in diff erentiating some 

of the foregoing Challenge # 6 from the present 

Challenge # 9. Whereas Challenge # 6 asked how 

might models be used to inform the deployment 

and re-deployment of observing capacity in a built, 

operational EO, our concern here is diff erent. An 

important part of the challenge is one of reconstructing 

coherent, homogeneous fi elds of variables internal to 

the model ([α,x
n
,x

m
]), in particular, from all manner 

of heterogeneous observing platforms and devices 

(subscripts m and n here distinguish between states 

25  Although we can usefully relax this constraint of be-
ing “near real-time” for the purposes of considering issues of 
data assimilation.
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BOX 4

Control Theory:
The Detailed Anatomy of Model State-Parameter Estimation

The model M relates inputs u to a variety of other entities: to state variables xm that are measurable 
(in effect xm  y, the outputs); to states xn that are to all intents and purposes not measurable, i.e., not 
accessible at a suffi ciently fast sampling frequency (given current sensor technologies) or lacking the 
requisite intensity of spatial sampling; and to parameters α. Given the data [u,y] and given the current 
model M(t), the original motivation of fi ltering theory was to reconstruct current estimates of the 
unknowns within M, now distinguished in more refi ned terms as [α,xn ,xm]. The quintessential feature 
of Kalman’s fi lter is the manner in which forecasts of the fi elds [α,xn ,xm] are updated (or adapted) on 
receipt of the current observations, as an elegant function of the balance between the uncertainties of 
these forecasts and those of the observations.

Technically speaking, adapting estimates in the near past (t -) given [u,y] up to the present (t) is 
referred to as smoothing, while adapting them now (t) is the act of fi ltering; and not surprisingly, 
generating estimates into the short-term future (t +) is the matter of forecasting. In these abstract 
terms, there is very little that distinguishes the notion of parameters α from that of states (xn ,xm), 
merely their respective, presumed rates of change with time (and space). For α these ought either to 
be zero, or tending towards zero, i.e., α is truly constant or, at most, changing slowly.

Feedback Control:
When the Quality of the Model is Not Paramount

For the purposes of reconstructing estimates of [α,xn ,xm] in the vicinity of the present, the quality, 
security, and reliability of the model structure (M(t)) through which these quantities are inter-related, 
do not have to be paramount. They might be highly desirable properties of the model, but not 
necessary for the purposes of exercising (real-time) control: fi rst, because the model needs only to be 
a reasonable approximation of the system’s behavior over a very short span of time; second, because 
the deleterious consequences of acting on an erroneous basis will be quickly rectifi ed, when actual 
behavior (y(t +)) is next checked against desired behavior, yd(t +) — at least where there is feedback 
control, as opposed to feedforward control. Indeed, it is the goal of feedback control to maintain 
adequate steering of the system’s behavior in a desired manner in the face of an uncertain M, as well 
as uncertain future incoming disturbances (elements of u).1

Adaptive Control:
Seeking Deliberately to Improve the Quality of the Model

In adaptive control schemes it may be highly desirable to allow the parameters of the model (α) to 
change with time, such that model M(t) is always a reasonable approximation of what we might 

1  Feedforward (open loop) control presumes a secure model of how the system works, generates on that basis controlling 
actions intended to compensate for the anticipated consequences of the incoming disturbances that will impinge upon the 
system — but never acts upon any checks of whether actual and desired responses in the system’s behavior are matching each 
other. Critical to the success of feedforward control is that the knowledge embodied in the model, and foreknowledge of what 
will be the future disturbances, are both subject to very low uncertainty.
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call the actual, local, behavior of the system in the vicinity of the present. For in real-time control 
the priority is control of the behavior of y, not acquisition of the best, most scientifi cally sound M. 
However, given the uncertainty in M(t), and therefore in α(t), it might be prudent for the manipulative, 
controlling, input actions applied to the system (in effect, elements in the vector u) to be chosen so as 
to probe the behavior of the system in a manner deliberately designed to yield better estimates of α(t), 
i.e., to reduce the uncertainty in our understanding of the system’s behavior (encapsulated in M(t)). 
Where such adaptive control entails choosing elements of the current controlling actions (say u(t)) as 
a function of evaluating what it might take to have future y(t +) matching yd(t +), i.e., predictive control 
(Woldt and Dahab, 2006), so the algorithmic scheme is solving all three of our textbook problems at 
one and the same time.

Hence — broadly speaking — we have the algorithmic basis of adaptive environmental assessment 
and management fi rst so eloquently expressed in the book of Holling (1978). One essential difference 
between the apparent contemporary lack of pragmatic interest in real-time control and today’s 
complete embrace of adaptive management of environmental systems, may reside in the difference 
in the scales of time to which each primarily refers: very short (days, hours, minutes, seconds) 
in the former; but over the medium term in the latter, where policy choices are to be made and 
implemented over the span of months and years.

The algorithmic and conceptual foundations of fi ltering theory and real-time control are thus 
applicable over scales of time and space far from what constitutes but the very local in space-time 
— literally, in the here and now. Relaxing our constraint of [t -, t, t +] all being close to one another 
allows us now to enfold types of problems other than real-time forecasting and control into the same 
conceptual problem-solving framework.

When Quality of the Model is Crucial

There is one facet of real-time control, however, where we should want a model of the system M(t) to 
be very reliable. A defi ning feature of biological systems of water and wastewater treatment is the fact 
that one wishes to exercise control not so much on the basis of that which can be readily observed, 
i.e., y(t) and therefore xm(t), but on those states xn(t) recalcitrant to easy observation in real-time, 
typically the biomasses of a microbial ecosystem (Beck, 1981; Chen and Beck, 1993). In the absence 
of a reliable model, it is in the nature of fi ltering algorithms to manipulate estimates of xn(t), not to 
mention α(t), such that the estimate of xm(t) closely tracks y(t), at least to the extent that (logically) xm 
 y. Choosing an action conditioned upon a highly uncertain, reconstructed estimate of xn(t) would 
not be a good policy. Assessing the quality of the model M is therefore far from unimportant, even 
in real-time applications. It is just as important in the context of data assimilation, but in a different 
manner, as we shall see.
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BOX 4

Data Assimilation:
Wresting Homogeneity of Estimated Fields

from Heterogeneity of Data Fragments

The generic character of data assimilation has already been expressed. It is, to reiterate: given the 
data [u,y] and given the model M, fi nd [α,xn,xm]. Of particular interest is the matter of solving this 
problem when the nature of the data is an eclectic mix of fragments of the (ideal) whole, as it is in 
the dynamic global vegetation models of Moorcroft (2006) (see, more specifi cally, for example, the 
complex of tower fl ux, fl ask, and satellite data discussed in Running et al, 1999). Let us suppose the 
mix of fragments, blocks, and patches of data across the various scales of space-time are denoted 
[u,y;Δt,Δs], where ∆t and Δs are a variety of (integer) multiples of the base numerical discretization 
of the time-space grid of the model M, i.e., intervals δt and δs. The heterogeneity of the data can be 
assimilated through the model — and an accompanying procedure of estimation — to generate the 
time-space fi elds of [α,xn,xm], wherein the orders of the vectors in the latter will typically be very 
much higher than the order of the vector y of observations, especially in respect of coverage in space. 
Insofar as xn interpolates amongst and extrapolates beyond the “sampling points” of xm characterizing 
the behavior of the system along the biogeochemical continuum, this complements assimilation (state 
reconstruction) along the dimensions of time and space.

The power of the assimilation, when working with the various heterogeneous fragments of data, lies 
in the manner in which the model inter-relates the components of behavior underlying all of these 
fragments, as a refl ection of the behavior of the system as a homogeneous whole. This is exactly what 
we should expect of the environmental cyber-infrastructure to emerge in response to Challenge # 2 (in 
Chapter 2.2). There are bounds on the possibilities, however. Again they have to do with the quality of 
M, expressed now as a variation on the foregoing theme.

State-parameter Estimation or Model Evaluation
But Not Both Simultaneously

In order for the reconstructed time-space fi elds (of just [xn,xm] in fact) to be trustworthy in respect 
of provoking new scientifi c insights and hypotheses, model M should be maximally reliable in its 
encoded knowledge base. Ideally, the investigator should be in a position to assert that the model’s 
parameters α are known with certainty. If this is not the case, for example when the structure of M 
is considered known and correct, but some or all of α must be treated as unknown constants, any 
signifi cant mismatch between the structures of behavior underlying the model and the observations 
is likely to be channeled into untrustworthy and distorted reconstructions of [xn,xm], which distortions 
are likely to be magnifi ed the higher the order of xn, in particular. Conversely, the capacity to evaluate 
the appropriateness of M when data are to be assimilated will be diminished, if not rendered entirely 
impotent. Comparing the total order of the three vectors in [α,xn,xm] with that of the lone vector y, our 
metaphorical mathematical textbooks will tell us there is something of a challenge here: of “seeking 
too much from too little”; of attempting to reconstruct many more unknowns than there are knowns, 
which is not signifi cantly vitiated by the potential to observe y repeatedly (in time).
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that are readily observable (m) and those that are not 

(n); see Box 4). 

Assimilating the observations alone, in reconstructing 

the fi elds of [α,x
n
,x

m
], will result in massive sets of 

(computational) data (for example, Lermusiaux et al, 

2006a). When coupled with the need to compute the 

uncertainties attaching to all the elements of these 

fi elds (Lermusiaux et al, 2006b), fi nding and developing 

innovative means of visualizing such “gigantic data 

sets”, in the words of the NSF’s blue-ribbon committee 

on Simulation-Based Engineering Science (NSF, 2006), 

become indispensable to scientifi c progress. Ecology, 

in particular, in its need to estimate net ecosystem 

exchange (NEE) of C between the land surface and the 

atmosphere, has but recently assumed an interest in 

data assimilation (for example, Williams et al, 2005), 

with evident energy, although not solely through the 

device of some algorithmic variation on the theme 

of fi ltering theory26. Hydrology, wherein such forms 

of data processing have now a mature history of at 

least three decades, has its own grand challenge: of 

reconstructing precipitation fi elds, soil-moisture 

patterns (McLaughlin, 2002), and mapping the 

recharge of sub-surface water systems “from space” 
(Entekhabi and Moghaddam, 2007).

Conspicuous by its absence here is environmental 

engineering, wherein applications of data 

assimilation might most have been expected. For 

there one has the fact of practical access to HVHQ 

data and the need to exercise control on the basis 

of reconstructed fields of unobserved microbial 

populations (x
n
) — colored and animated through 

computational visualization (to cultivate the right 

populations at the right times and right places 

in a biological wastewater treatment system, for 

example). But this is, significantly and distinctively, 

a matter of processing information in real time.27 

26  Phrasing, or terminology, continues to have the 
potential to confuse. Sacks et al (2007) write of a “model-data 
fusion analysis”: in essence, calibration of a model M against 
data [u,y], with then reconstruction of constituent fl uxes 
internal to the model as a function of its estimated param-
eters and (deterministically computed) unobserved states, 
i.e., [α,x

n
]. Wylie et al (2007) report on a method of “adaptive 

data-driven models” — let us say, a family of identifi ed re-
gression relations, M(t

i
,s

j
) for several discrete periods of time 

(i) and discrete areas (j) — for achieving much the same.

27  Until 2007 (at least) the WATERS Network was 
entertaining the goal of detecting and forecasting the na-
tion’s water conditions in real time. By the time of issuing 
its eventual “Draft  Science, Education, and Design Strategy” 
document (WATERS, 2008) emphasis appeared to have been 

And it is on this that our next grand challenge 

focuses.

Challenge # 9:

In a world of increasing inter-connectedness 

and instantaneous communication, 

environmental vulnerability, and 

infrastructure systems fragility — subject 

in all probability to higher-amplitude 

extreme events, natural disasters, terrorist 

threats, and the like — how best can the 

expected innovations in cyber-infrastructure 

and sensors under the Environmental 

Observatories programs be used in 

developing models and real-time data-

processing and forecasting algorithms: for 

the on-line detection of faults, failures, 

anomalies, and the weak signals portending 

imminent dislocations in system behavior; 

and for orchestrating/guiding rapid counter-

measures for enhancing and resuscitating/

reviving damaged system functioning, system 

survivability, and resilience?

Time is of the essence. But so is the imploding intensity 

of society’s interactions with the environment, ergo 

the more rapid propagation of consequences arising 

from natural events, faults, and failures. A conceptual 

argument can be mounted — for in general we 

lack suffi  cient data sampled with a suffi  ciently high 

frequency over suffi  ciently long (historical) periods to 

provide the basis of any empirical support — to suggest 

a growing preponderance of signifi cant environmental 

perturbations of a higher-frequency character (at 

frequencies of days and hours, as opposed to months 

and years; Beck, 2005a)28.

Th e hurricane epitomizes the extreme natural 

event, for which there is a cyber-infrastructure for 

forecasting its trajectory and evolution in real time 
(for example, Gopalakrishnan et al, 2002). Such 

archetypal storms in turn call for real-time forecasting 

of stream stages and discharges, as discussed in the 

context of data assimilation and adaptive forecasting 

by Romanowicz et al (2006). And likewise they call 

withdrawn from the “forecasting” element, leaving “detect-
ing” thus much more prominent. Th is may be evidence, then, 
of the magnitude of Challenge # 9, notwithstanding any 
thrill at conquering some last technical frontier.

28  Th e term “frequency” is used here to connote the 
speed of propagation of a disturbance, not the frequency of 
occurrence of such an event over a given span of time.
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for schemes of real-time control over fl ows in urban 

sewer networks (Pleau et al, 2005), not least for the 

network to fulfi l the function of “shock absorber” 

to the downstream wastewater treatment plant. Th e 

sudden spill of contaminant, deliberate or otherwise 

(from infrastructure failure), is another archetypal fast 

transient event. Th ere, the purpose of an environmental 

observatory and its cyber-infrastructure, is to “pounce” 

immediately, as it were, onto the data streams in order 

to recognize “an event”, and to diagnose what, when, 

where, and how to countervail, in order to protect 

the well-being of the public, the fl ora and fauna, 

and the continued functioning of the (protective) 

built infrastructure itself (an issue also of concern in 

Challenge # 6).

Th ere is a qualitative diff erence between an event 

whose propagation and consequences are broadly 

known, even in advance of its occurrence, from one 

of broadly unknown consequences and directions 

of propagation, even substantial uncertainty about 

whether an event has occurred. For the former, it could 

be that the grander of the challenges for the future 

reside not in the technical domain, but at the interfaces 

between science, policy, and society. Some of the 

Environmental Observatories will have the ambition of 

operating at these interfaces.

In 2005, the US National Water Research Institute 
(NWRI) facilitated a Workshop addressing this 

question: “What are the priority needs for social science 

research with respect to the hurricane forecasting and 

warning system?” (National Center for Atmospheric 

Research & the UCAR Offi  ce of Programs; www.

sip.ucar.edu; accessed 11 March, 2007). As an issue, 

“Precision Versus Accuracy: Are Risks Adequately 

Expressed by Current Deterministic Forecasts?” was 

ranked seventh amongst 22 in the Workshop Report. 

As a counterpoint to the evident enthusiasm in the 

NSF’s blue-ribbon committee on Simulation-Based 

Engineering Science, this hurricane Workshop Report 

challenges itself — and our community — on the 

matter of social accountability: “It Is in Color, and It 

Animates, So It Must Be Right”. Outside our cloistered 

circles of research and scientifi c enquiry, it should not 

surprise us that the trustworthiness of a model may be 

gauged, by the stakeholder taking fl ight in the face of 

a forecast threat, in ways very diff erent from either the 

model-builder or the model-user.

Point of Departure in Responding to Challenge # 9

At the technical level, the cyber-infrastructure for the 

Littoral Ocean Observing System (LOOPS/Poseidon) 

shown in Figure 7 and its attaching agenda of research 
(Lermusiaux et al, 2006a), stand ready and waiting 

to respond to Challenge # 9. In Box 5, therefore, 

each component of that agenda is translated into the 

conceptual framework of Box 4, in order to make 

it more generally relevant across the domains of all 

the EOs. Not surprisingly, Figure 7 shares much in 

common with the environmental cyber-infrastructure 

of Mahinthakumar et al (2006) for addressing issues of 

threat-response in public, potable water supply systems, 

and depicted in Figure 5. Elements of Challenge # 6 

on adaptive sampling and Observatory operations are 

inevitably common to some of those in Challenge # 9.

Th e schemes of detection, diagnosis, and counter-

action for the broadly unknown event are where 

the technical and algorithmic emphases of future 

programs of research on environmental models might 

best be placed (in response to Challenge # 9). Th e 

urban water distribution system is a microcosm of 

the “imploding intensity of society’s interactions with 

the environment”, as we have expressed it. And the 

cyber-infrastructure of Figure 5 was in turn described 

as “evert-alert ... continually primed and poised to 

detect” an unknown event. In the words, once more, of 

Mahinthakumar et al (2006):

[A] typical network is highly interconnected 

and experiences signifi cant frequent 

fl uctuations in fl ows and transport paths. 

Th ese design features unintentionally 

enable contamination at a single point in 

the system to spread rapidly via diff erent 

pathways through the network, unbeknown to 

consumers and operators due to uncertainty 

in the state of the system. Th is uncertainty is 

largely a function of spatially and temporally 

varying water usage. When a contamination 

event is detected via the fi rst line of defense, 

e.g., data from a water quality surveillance 

sensor network and reports from consumers, 

the municipal authorities are faced with 

several critical questions as the contamination 

event unfolds: Where is the source of the 

contamination? When and for how long…

Real-time answers to such complex questions 

will present signifi cant computational 

challenges.
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Th e kinds of “answers” discussed above in Chapter 2.6 

had to do with “how best to re-deploy fi nite observing 

capacity away from the previous regime [u,y;t -]S towards 

[u ,ʹy ;ʹt +]S, where t - marks time before t and t + marks 

time aft er t, the moment of the event.” In that sense, 

the answers amounted to nothing more than passive 

observation alone of an unfolding contingency, albeit 

witnessed then in much greater detail.

Challenge # 9, in contrast, obliges us to contemplate 

the nature of actions intended deliberately to counter 

(enhance) the deleterious (desirable) consequences 

of the event — in real time. 29 At the very swift est, 

29 Of course, if the eff ect (y) and the model M are 
known, and the unknown cause (event) is considered an ele-
ment of the observed inputs (u), then Challenge # 6 has too 
the task, in this sense, of fi nding u given M and y.

subliminal level, there is no time for such actions to wait 

upon cogitation on the part of the human “User” in the 

cyber-infrastructure of either Figure 7 or Figure 5. Th is 

is why we have automated control systems.

Th e Engineering of Control: Th roughout the Life Cycle

Speaking of the urban water distribution system, 

Mahinthakumar et al (2006) note that it is the design 

features of such systems that unintentionally give rise to 

the sudden, transient, unpredictably propagating events 

their environmental cyber-infrastructure is intended 

to detect and counter. A substantial part of the historic, 

constrained capacity to implement controlling actions 

— in general, in real time — in the built environments 

of metropolitan water infrastructures, has been 

insuffi  ciently detailed “thinking ahead”, from within 

Figure 7

Schematic of the architecture of the Littoral Ocean Observing and Prediction System (LOOPS/Poseidon) from the work of N M Patrikalakis, J J McCarthy, 
A R Robinson, H Schmidt, W Cho, C Evangelinos, P J Haley, S Lalis, P F J Lermusiaux, R Tian, W G Leslie, and W Cho. Reprinted with permission from 
Lermusiaux et al (2006a).
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BOX 5

An Ocean Sciences Research Program
and Its Pursuit in Other Branches of Environmental Science

A research agenda for the Littoral Ocean Observing System (LOOPS/Poseidon) has been expressed 
in Lermusiaux et al (2006a). Set originally in the specifi c domain of the Ocean Sciences it can be 
re-cast in the generic conceptual framework elaborated in the preamble to Challenge # 9, facilitating 
access thereto from the constituent disciplines of all the EOs.

The fi rst component of the ocean sciences research agenda is (Lermusiaux et al, 2006a):

(1) to integrate the various data with dynamical models to obtain optimal descriptions of 

the ocean and allow accurate process studies

which herein we would express as (1) reconstruct the temporal evolution of the fi elds of [xn,xm], 
together with their respective uncertainties (see also Lermusiaux et al, 2006b) — the most customary 
format of data assimilation — with a view to (2) provoking novel insights and hypotheses, uniquely 
enabled by such visualization and animation, i.e., as originally expressed (Lermusiaux et al, 2006a):

(2) to provide a foundation for hypothesis testing and model improvement, including 

estimating model and data errors (uncertainty modeling)

Under its respective EO, terrestrial ecology will increasingly have the novel opportunity of 
employing just the single, homogeneous model M with which to assimilate heterogenous fragments 
of data, across tower fl ux, fl ask, and satellite devices (Running et al, 1999). The ocean sciences have 
a diversity of ship, aircraft, satellite, buoy and submersible as observing platforms (Figure 7), from 
whose partial, differently angled “glimpses” into the behavior of marine systems — when brought 
together uniquely and distinctively within the whole of M — might spring the basis of discovery. We 
can see how “adaptive modeling” lies at the heart of Figure 7 and how within it state variables and 
parameters are conceptually separated into those that are measurable and those that are not, i.e., 
[xm,xn] and [αm,αn] respectively. Some, however, might question whether any model parameter is 
itself directly observable, as opposed to only calculable indirectly from the relationship, i.e., model, 
between the observable quantities in which it appears.

The ocean sciences agenda continues with a third component (Lermusiaux et al, 2006a):

(3) to initialize ocean models, or the ocean component of coupled models, and assimilate 

subsequent observations for optimal forecasting

Since the order of the state vector [xm,xn] of the model M to be employed in making forecasts into 
the future (t +) is much larger than that of the states directly observable (xm), our expression of this 
challenge would be: (3) assimilate data from the past (t -) up to the start t0 of the forecasting horizon 
in order to provide the initializing estimates of [xm,xn; t0] (within M).

Whereas our transcribed goals (1) and (2) deploy the unifying power (and presumed reliability) of M 
for the purpose of state reconstruction, a fourth goal seeks to channel processing of the collection of 
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data fragments into probing of that very reliability of the model, expressed originally as (Lermusiaux 
et al, 2006a):

(4) to estimate model parameters and parameterizations, including forcing and lateral 

boundary conditions

We transcribe this goal as: (4) to reconstruct [α,u], i.e., assimilate the data into the prior model 
Mprior, in order to investigate any propensity for temporal-spatial variability in α, hence to arrive at 
an improved model from which any signifi cant tendency for such parametric variability has been 
removed by restructuring of the model into an improved Mposterior (more or less as demonstrated 
in Spitz et al, 2001). The challenge in this, of course, is to constrain somehow the enormous 
computational freedom in reconstructing from the data the vast, unknown fi elds of states [xn,xm] at 
the expense of impotence in exposing unambiguously any structural error/uncertainty in Mprior — our 
Challenge # 7, in fact.

A fi fth and fi nal goal of the ocean sciences research agenda echoes our foregoing Challenge # 6 
(Lermusiaux et al, 2006a):

(5) to provide the means to assess observing systems, measure the utility of new data 

and collect the most useful observations through adaptive sampling

Indeed, experience from the ocean sciences has been defi ning for that earlier grand Challenge (for 
models across all the environmental sciences), i.e.: (5) to assess the effectiveness of choices over 
what is to be observed [u,y] in respect of minimizing the uncertainties attaching to the reconstructed 
fi elds [α,xm,xn] and — in a quasi-real-time sense — to use these fi elds up to the present, let us say 
[α,xm,xn;t -,t] in order change the current observing strategy [u,y;t -,t] to another, [u ,́y ;́t +].
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the earliest stages of the life cycles of such systems 

(planning, design, and construction), to the needs and 

nature of their subsequent operation (Beck, 2005a). 

Such would be to the regret of Sir Alan Harris. Hence 

also, in no small part, have contributions to the topic 

of data assimilation from environmental engineering 

been conspicuous by their absence. Th e challenge 

now is obvious: using models M of the entire built 

infrastructure, to design for its survivability, resilience, 

and adaptability over the long span of the operational 

stage in its life cycle.

Some would argue (Holling, 1996) that the fragility, 

or “brittleness”, arguably manifest in the behavior of 

current city water infrastructures, is a consequence, 

over the decades and centuries, of building into 

them but a kind of “engineering resilience”. Th is 

is a form of resilience wherein control — perhaps 

quintessentially the control engineering of automated, 

real-time control — is utterly dedicated in concept 

to pursuit of operation at a narrowly defi ned target 

of desired system performance, caricatured as some 

singular point y
d
 invariant over time. For as long as the 

disturbances (u(t)) impinging upon the system are of 

but modest amplitude, behavior can be confi ned to a 

very small domain about y
d
. Come the unexpectedly 

large disturbance, the achievement of engineering 

resilience is lost. Worse still, perhaps not even any kind 

of base-line protective function of the infrastructure is 

preserved over the future period of system recovery. For 

that, Holling argues, the system must possess a kind of 

“ecological resilience” (Holling, 1996; and Challenge 

# 5), possibly something akin to the auto-immune 

response of the body. And that is truly the nature of the 

challenge just expressed, as well as a central reason for 

seeking a “biologizing” of control theory (Casti, 2002) 

in response to Challenge # 5.

It does not have to be large disturbances towards which 

an observing and supervisory system must remain alert. 

Watts (2002) asks, for instance:

How is it that small initial shocks can 

cascade to aff ect or disrupt large systems that 

have proven stable with respect to similar 

disturbances in the past?

And then he proceeds to answer his own question using 

a model network of agents, in other words, an agent-

based model (or IBM). Studies of urban wastewater 

infrastructures using integrated sets of diff erential-

equation models are already suffi  ciently mature for 

research to commence into identifying potentially risk-

prone “hot spots” (Vanrolleghem et al, 2005).
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Chapter 4: Science and Engineering for Policy and Society

Looking back over the preceding 

Sections and Challenges of this 

White Paper, a number of changes of 

emphasis are apparent, albeit with 

considerations of models (M) always central, against 

a constant background of, fi rst, the motivation of the 

Environmental Observatories initiatives and, second, the 

seeming inevitability of the oncoming environmental 

cyber-infrastructure.

Expression of our Challenges, their grounding in 

contemporary research, and the beginnings of indicative 

ways of responding to them, has shift ed strategically: 

from a focus on science (the Challenges of Chapters 

1 and 2) to an outlook embracing both science and 

engineering (Challenge # 9 in Chapter 3). Th is trend 

will be continued in the present Chapter, as the context 

in which the last three Challenges are elaborated turns 

towards addressing issues at the interfaces, not amongst 

the disciplines of the EOs as previously, but amongst 

Science, Policy, and Society. With this progression comes 

an expanding purview on the matter of who holds a 

stake in the outcomes of the Challenges being expressed: 

from primarily the scientist and model-builder as 

stakeholder hitherto, to gathering in of the policy-maker 

as stakeholder, and so to an all-inclusive awareness of the 

needs of the scientifi cally and technically lay members of 

the general public.

Our goal remains unchanging, however: to refl ect on the 

challenges for research in the future on environmental 

models.

Problem-solving in the sense of the third of our triplet 

of textbook puzzles, i.e., fi nd u, given M and desired, 

feared, and/or threatened y, is defi ning for both 

Challenges # 10 and # 11 to come. Having narrowed 

the span of attention to near real-time for the purposes 

of Chapter 3 (and Challenge # 9), we shall immediately 

relax it in the following (for Challenge # 10). “Real 

time” will be substituted by “slow time”; and short-term 

future horizons will become the “long view” across the 

generations (in Challenge # 11; Chapter 4.2). Th e iconic 

“User” in the cyber-infrastructures of Figures 7 and 5 

will be considered to have time enough for cogitation in 

the “feedback loop”; and the nature of the stakes held by 

that User will broaden, as we have said.

Two themes, then, will become central to the next pair 

of Challenges. Both can be thought of as discussions 

along a continuum: along the extent to which the 

“human dimension” is projected into the formalities 

of the model (M); and a progressive uncovering and 

refi nement of — an extension of — what is understood 

as Uncertainty. We begin with the latter (in Chapter 

4.1), acknowledging its continuing prominence, and 

noting from our present vantage point how it emerged 

as far back as Challenge # 6. Whereas uncertainty 

was key to assessment by the model-builder of the 

power of a model to explain past observed behavior 

unambiguously, under Challenges # 7 and # 8, its 

consideration will now be key to the policy-maker as 

well, whose concern is to know where the model can be 

relied upon and where not.
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4.1 Management and Decision-support

In 1992, an article with an arresting title was published 

in the journal Advances in Water Resources: “Ground-

water models cannot be validated”, it proclaimed 
(Konikow and Bredehoeft , 1992). Th e title had 

three purposes: fi rst, to shock the community of 

groundwater modelers — to jolt them out of the view of 

models being, or becoming, the “truth of the matter”; 

second, to affi  rm the kind of Popperian view on the 

growth of knowledge set out in introducing this White 

Paper (in Chapter 1.1); and third, to acknowledge the 

need not to mislead those scientifi cally lay members 

of the public, who hold a stake in the decisions to 

be made, into believing models encapsulate the 

(incontrovertible) “truth of the matter”.

At the Interface With Society and the Community of 

Scientists

Some seven years later, in 1999, pandemonium broke 

out in the normally quiet world of environmental 

foresight in the Netherlands. Its National Institute for 

Public Health and the Environment (RIVM), offi  cially 

charged with preparing the country’s State of the 

Environment Reports, was publicly accused of lies, 

deceit, and shoddy workmanship with its computer 

models — by one of its own statisticians. Th e aff air 

became front-page news, received prime-time coverage 

on television, and provoked questions and debate in the 

Dutch parliament (van der Sluijs, 2002; Petersen, 2006).

Th roughout the 1990s the “headline” forecast of a 

change in global atmospheric temperature remained 

remarkably stable, anchored in the conclusion from 

the 1992 report from the Inter-governmental Panel on 

Climate Change (IPCC), which observed (Houghton et 

al, 1992):

[T]he evidence from modelling studies, from 

observations and sensitivity analyses indicates 

that the sensitivity of global mean surface 

temperature to doubling CO
2
 is unlikely to lie 

outside the range 1.5 to 4.5C.

Th at the forecast should have remained so stationary 

over the years, in spite of all the research invested in 

reducing the scientifi c unknowns approximated in the 

models, was a curiosity to some of those studying the 

behavior of the scientifi c community involved (van 

der Sluijs et al, 1998). Th ey argued that the constancy 

of the forecast may have fulfi lled, primarily in fact, 

a sociological role: of maintaining coherence in the 

fragile process of building a global policy community, 

while not doing justice to the variegated, evolving 

understanding of the earth system (van der Sluijs et al, 

1998).30 Hardly surprising, then, was the way in which 

publication of Lomborg’s Skeptical Environmentalist 
(Lomborg, 1998) was to rattle the (arguably) hard-won 

composure of the scientifi c establishment, in particular, 

some members of the global change and earth systems 

science communities.

Mathematical models, and the interpretations and 

forecasts derived from them, have become matters of 

both very public debate and popular concern. To his 

2004 novel State of Fear, best-selling author Michael 

Crichton appends an illuminating “Author’s Message”, 

in which he off ers his perspective on the state of play in 

modeling and forecasting the impact of climate change 

on sea levels: “all sides overstate the extent of existing 

knowledge and its degree of certainty” (Crichton, 2004; 

page 625); and subsequently, on page 628, he urges, 

“We need more people working in the fi eld, in the 

actual environment, and fewer people behind computer 

screens”.

Even if the level of eff ort devoted to both sides 

(observation and computation) were balanced, the 

divide may not be bridged. Indeed, what transpires 

at this seemingly esoteric divide can remain both 

very public and highly contentious. Challenge # 7 is 

cast exactly there. So also is Mooney’s (2007) popular 

account of Storm World, with characters to mirror the 

divide: Emanuel and colleagues set in the computational 

camp with their models (M); Gray and associates cast 

as empiricists. It makes for good reading to pit the two 

camps against each other, in this case without apparent 

inaccuracy in reporting. For there appears to have 

been no meeting of minds, i.e., no productive, inter-

penetration of theory-based and data-based models, of 

the kind commended in response to Challenge # 7 (in 

Chapter 2.7). Still others, not encamped on either side of 

the divide, can yet get caught in the cross-fi re, and come 

to regret not having had the benefi t of an education in 

debating science in public (Curry et al, 2006).

As if to echo the earlier Dutch (RIVM) “foresight 

scandal”, and citing Konikow and Bredehoeft  (1992), 

Lomborg (1998), and Crichton (2004), one side of the 

debate over the trustworthiness of environmental 

models and their forecasts has culminated in 

this contemporary title: Useless Arithmetic: Why 

Environmental Scientists Can’t Predict the Future, 

30  Just as Schaff er (1993) has said: “the most apparently 
technical estimates of cometary [earth systems] science are 
very sensitive to public needs and attitudes”.
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written deliberately for a non-technical audience 
(Pilkey and Pilkey-Jarvis, 2007).

Such uncloaking and public exposure of the 

weaknesses of models is neither new nor about to 

cease. Models, it has been said (Rayner, 2008), allow 

the craft  skills and expertise of the model-builder 

to be legitimated — made objective (as opposed 

to subjective) — such that that expertise may be 

presented in an impersonal manner. Some would say 

disparagingly “passed off  as detached and impersonal”. 

Model-building is thus merely the latest in a long 

tradition of creating oracles to be consulted. Deliberate 

shrouding of the soothsayer’s device in a mystique is 

ages-old, Schaff er (1993) would remind us, doubtless to 

the delight of Pilkey and Pilkey-Jarvis (2007).

Modelers, as a professional sub-group, are by no means 

universally held in high social esteem amongst the 

broader community of scientists.31

At the Interface With Policy, Regulation, and Law

Th e US National Research Council’s (2007) report, 

Models in Environmental Regulatory Decision 

Making, records the recent history of environmental 

models being put to use in the formulation of policy 

and promulgation of regulations (NRC, 2007). Th e 

executive branch of the US Federal Government, 

through its Offi  ce of Management and Budget (OMB), 

issued guidelines in 2001 calling for each regulatory 

agency to develop, in turn, their own guidance on 

ensuring the quality, objectivity, utility, and integrity 

of information employed in support of policy 
(OMB, 2001). Th e US EPA’s Council for Regulatory 

Environmental Modeling (CREM) — itself established 

in 2000 in response to the same gathering political 

momentum, for assuring quality in the numbers put 

into and generated by models — issued subsequently 

its draft  guidance document (Pascual et al, 2003). 

Krupnick et al (2006) — writing more recently on 

the communication and treatment of uncertainty in 

models employed in Regulatory Impact Assessments 
(RIAs), like the NRC committee — directly 

acknowledge two policy-related documents as the 

motivation for their work: an earlier NRC report on 

31  See, for example, the report on the 13 February, 
2008, Seminar “A New Look at the Interaction of Scientifi c 
Models with PolicyMaking”, held within the Policy Foresight 
Programme of the James Martin Institute at the University of 
Oxford, UK (www.martininstitute.ox.ac.uk). Th e comments 
of Rayner (2008) reside in this report.

proposed regulations for air pollution (NRC, 2002); 

and an OMB circular giving specifi c and detailed 

guidance to EPA on analyses of uncertainty (OMB, 

2003).

Where there is regulation, there is the law, from which 

may follow litigation, including over the validity of 

a model: just as Bair (1994) was to observe in the 

wake of the milestone of Konikow and Bredehoeft ’s 

(1992) contribution; and professional lawyers were to 

document a decade later (McGarity and Wagner, 2003). 

We see policy formation at a strategic level, therefore, 

with yet an interest in uncertainty penetrating to quite 

some technical depth. Conversely, uncertainty in the 

science encoded in the model must be articulated and 

addressed within the legal discourse, in largely non-

technical terms understandable, in principle, to all 
(Pascual, 2005; Fisher, 2007).

Where assessment panels are dealing with such 

uncertainty at the Science-Policy interface — and, 

above all, its communication to a scientifi cally lay 

audience, as in the Intergovernmental Panel on Climate 

Change (IPCC) — Patt (2007) argues there is a need 

not to confuse uncertainty associated formally with 

the model (M) with uncertainty arising from confl ict 

amongst scientifi c experts. Audiences (the public) may 

respond diff erently to the two sources of uncertainty 
(Patt, 2007).

Th rown into the spotlight of public policy and public 

scrutiny, models, their uncertainties, and their 

trustworthiness pose thus challenges of a diff erent 

character, albeit — perhaps — at one stage removed 

from the principal scientifi c thrusts of the EOs and 

environmental cyber-infrastructure.

Trustworthiness of Models in Supporting Policy Tasks

On 29 August, 2003, the OMB issued a “Proposed 

Bulletin on Peer Review and Information Quality”. Th e 

purpose of the Bulletin was to ensure “meaningful peer 

review” of science pertaining to regulation, as part of 

the “ongoing eff ort to improve the quality, objectivity, 

utility, and integrity of information disseminated by the 

federal government”, to which we have already alluded.

Responding to the manner in which the Bulletin was 

proposing to meet this intent, Jasanoff  (2003) argued 

that, in short, making progress may depend more 

on getting stakeholders — the public, the regulators, 

the scientists, and so on — to agree in advance on 

appropriate methodologies and investigative protocols, 

than on subsequent scientifi c peer review, at least in 
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regulatory science. Establishing, and demonstrating, 

the reliability and credibility of the peer review process 

itself are every bit as crucial as the conventional 

challenge of establishing the reliability and credibility 

of the information to be reviewed in the process, 

including that from models. In what would be 

Jasanoff ’s preferred form of “extended peer review”, it 

is the process, not the product, that matters; and the 

scientifi cally lay public, as legitimate stakeholders, 

should be engaged therein from the very beginning.

Jasanoff , let us be clear, was speaking on matters of 

science, not models (M), at the interface with public 

policy. So too are Nowotny et al (2001) in their book 

Re-Th inking Science: Knowledge and the Public in 

an Age of Uncertainty, portrayed somewhat more 

provocatively under the title of “Science’s New Social 

Contract with Society” (in an article published in 

Nature — portentously perhaps — on the eve of the 

new millennium; Gibbons, 1999). Th eir book reveals 

the challenges and responsibilities of environmental 

science as key to their thinking.

When Funtowicz and Ravetz (1990) wrote their book 

on Uncertainty and Quality in Science for Policy they 

may not have had environmental policy primarily in 

mind. But their work has since risen to prominence 

in this domain (van der Sluijs, 2007), as indeed 

acknowledged at the outset of the monograph on 

Environmental Foresight and Models: A Manifesto 
(Beck, 2002; page 3):

Today’s problems of environmental protection 

diff er signifi cantly from those of the past in 

several respects. Most obviously, the scale 

of the current problems is oft en global (not 

local) and their dynamics are evolving with 

relatively long (as opposed to short) time 

constants. Analysis of such problems will 

require extrapolation of perhaps staggering 

proportions: of making statements about 

the entire mosaic having inspected just the 

nature of a single tile. Perhaps less obviously, 

but more directly indicative of the distinctive 

character of this Monograph, we must fi nd 

solutions that are based on inconclusive model 

evidence, not conclusive fi eld evidence. Our 

research must be conducted in a setting of 

policy proximity and data poverty, as opposed 

to policy remoteness and data richness 
(Funtowicz and Ravetz, 1990). And we shall 

be less concerned with optimising recovery 

under low costs of failure, rather with avoiding 

disasters with high costs of failure.

For all of these reasons, including the foregoing 

observations on the esteem in which modelers are 

held, there is cause for us to question how society 

and policy-makers might view environmental 

models. Th is is especially so in the light of the 

thought-provoking title of Gibbons’ paper (Gibbons, 

1999), questioning the manner in which major 

scientifi c expenditures are justifi ed, such as self-

evidently — and tellingly here — for the EOs and 

environmental cyber-infrastructure themselves.

In short, once the issue was of model (in)validation. 

It was cast in formal, technical terms, of matching 

scientifi cally observed history with satisfactory 

quantitative statistics (for example, Konikow and 

Bredehoeft  (1992)). It was of concern primarily to those 

who had developed the model, or been professionally 

trained to use it; and it was of signifi cant philosophical 

concern, treated with equally substantial authority 

in Oreskes et al (1994) (and Oreskes, 1998). Now 

this has become a matter of whether models are 

to be trusted by legal and policy persons, without 

the customary technical training; and by those 

members of the scientifi cally lay public aff ected by 

the outcomes of decisions informed by the forecasts 

generated by our models. It is also an issue of 

whether models are trusted by the vast majority of 

members of the professional scientifi c community 

who do not consider themselves modelers.

It is not unreasonable to expect that models, developed 

in the predominantly science- and research-oriented 

context of the EOs, will be deployed for the purposes 

of formulating policy, be subject increasingly to 

penetrating public scrutiny, and be vigorously disputed 

in both policy and public domains.

Challenge # 10:

Under the prospect of lengthy and costly 

social negotiation and legal discourse over 

policy formation, wherein the placing of 

trust by various stakeholders in the models 

underpinning that policy is crucial, and 

where it has come to be recognized that the 

needs of model evaluation and peer review 

for conventional research science are diff erent 

from those of regulatory science, what 

new methods of evaluating the alternative 

models designed to fulfi l the predictive tasks 

of policy formation, decision-support, and 

management for environmental stewardship 

are urgently needed? How is the uncertainty 

associated with both the model and the 
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decision-making context to be handled 

computationally and what new algorithmic 

and procedural developments will this 

warrant?

Th ere is a paradox. Th e greater the degree of 

extrapolation from past conditions, so the greater 

must be the reliance on a model as the instrument of 

prediction; hence, the greater is the desirability of being 

able to quantify and evaluate the trustworthiness of 

the model, yet the greater is the degree of diffi  culty in 

doing just this.

Should the use of models be put aside in these 

situations? Pilkey and Pilkey-Jarvis (2007) argue they 

should, at least for all but what they call “qualitative 

models” (suggestive of Bayesian Belief Networks), in 

favor of the defi nitive fi eld experiment. Th eir position 

is close to the oft -heard plea to “let the data speak for 

themselves”, untainted by mediation through any 

model (M). Th ose raw untranslated data, nevertheless, 

may yet be used to tell a story quite diff erent from 

that to which, in respect of global warming, we have 

become accustomed (Robinson et al, 2007).

Th ere is, of course, a counter to the argument of 

putting models aside. It is founded upon a simple 

complement to the more familiar concept of a model as 

a “truth-generating machine”, liberated by an insight 

fi rst expressed long ago by Caswell (1976) in respect 

of ecosystem models, and now endorsed by the NRC 

report on Models in Environmental Regulatory Decision 

Making (NRC, 2007). It runs thus.

Conceive of the model as a tool designed to fulfi l 

specifi ed tasks, like a screwdriver or a computer 

program. Recall, from the discussion of algorithms 

for model calibration (in respect of Challenge # 7), the 

algorithmic framework of Regionalized Sensitivity 

Analysis (RSA) of Hornberger and Spear (1981), with its 

capacity to function eff ectively under gross uncertainty, 

employing but “qualitative, subjective, experience of 

the system’s apparent behavior” for the observed past. 

Recognize that behavior to be regulated in the future 

can be expressed formally for the RSA in just this same 

manner, as a (future) “behavior defi nition”. Th is might 

be in the form of a bracket of high-end exposure of 

a population to a novel, xenobiotic substance never 

before released into the environment, or a behavior 

imagined in the future, such as essentially similar 

circulation of waters in the North Atlantic, or radically 

diff erent patterns thereof. And then think of the model 

as a tool — as an instrument of prediction — the 

quality of whose design is to be evaluated against such 

a task specifi cation (such an expression of desired, 

imagined, or feared future behavior). We would be 

calibrating the model against a (qualitative) defi nition 

of future behavior.

Is the model M fi t for purpose, we should ask? Is it fi t 

indeed for a predictive purpose calling for substantial 

extrapolation into the unknown? In principle, 

previously unutilized numerical, diagnostic material 

from the RSA test can be evaluated statistically and 

made available to inform one’s judgement in coming 

to a view on this question (as sketched out in Beck and 

Chen, 2000).

Who is it, however, in a policy- and public-proximate 

setting, given Jasanoff ’s notion of “extended peer 

review” (Funtowicz and Ravetz, 1990) and Gibbon’s 

call for “socially robust science” (Gibbons, 1999), who 

must come to such a judgement on the model?

Models conceived of as tools entail design spaces, 

in which searches and compromises are eff ected in 

achieving the triple goals of “fi delity” (to the science 

base), “transparency” (to the stakeholders), and 

“relevance” (to the task at hand). Judgements on the 

quality of design, however, may reside primarily in 

the eye of the beholder. Th e plurality of stakeholder 

solidarities amongst the public will view the 

trustworthiness of the model, and the policy it informs, 

in a variety of ways, and subject to negotiation. Th e 

government agency employing M must anticipate this 

plurality of perspectives in forming its provisional 

policy; in the political economy of the tussles over 

the trustworthiness of the model, a minimization of 

transaction costs might be sought, but not necessarily 

a consensus; and due process in a court of law 

may be needed to impose a singularity of outcome 

on the plurality of solidarity perspectives on the 

trustworthiness of M. For but one course of action on 

environmental stewardship can be adopted over the 

next decision-period.

To be of practical policy signifi cance, any such 

computational advances in the analysis of uncertainty and 

sensitivity for the purpose of evaluating a model in the 

context of regulatory science will have to be articulated 

within the coherent administrative framework likely to 

emerge from the rich and extensive procedural detail set 

down in the NRC report on Models in Environmental 

Regulatory Decision Making (NRC, 2007). Should 

a suitable procedure materialize therefrom, some 

amongst the stakeholders might take all of this detail 

into account in coming to a summary judgement on the 

trustworthiness of the model and its forecasts.
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In the end, however, many others may not. Availing 

themselves only of the sparse heuristics these “many” 

are said to use in exercising judgement and making 

decisions (Kahneman et al, 1982), they might 

pragmatically place their trust in a model as a matter 

of mere faith, not the comprehension of voluminous 

procedural detail, much as the ancients would previously 

have ventured to consult an oracle (Ayton, 2007).

Uncertainty, Ignorance, Contradictory Certainties — 

and Making Decisions

Th ere is a pragmatist, decision-focused position on 

uncertainty in the model M. It will serve as our point 

of departure. Th is position has a distinctly diff erent 

perspective from that of coping with uncertainty and 

the lack of model identifi ability in solving the fi rst of our 

textbook problems (of fi nding M given u and y). Its goal 

is not to explain the past. It is diff erent yet again from 

attempts at eliminating uncertainty in the pursuit of a 

predictive science of the biosphere (Challenge # 8). It is 

instead this:

No matter the uncertainty in M, and the 

uncertainty in the resulting forecasts of 

the future of the environment (y), or in 

the (predicted) eff ectiveness of the policy 

alternatives and assumed future disturbances 

(u), as long as one policy, say u*, stands above the 

obfuscation of all the uncertainties, as that to be 

preferred — given the information currently to 

hand, and given too the various perspectives of 

all those holding a stake in the outcome of u*.

Th e formal, classical analysis of decisions, for 

identifying u*, can be simply portrayed in the tree-like 

graphical representation of Figure 8, with its sequences 

of nodes and branches: square nodes for the current 

and future decision points in time, with branches 

for each alternative course of action; circular nodes 

for events occurring over time into the future, with 

branches for the alternative, possible outcomes of these 

events, for future “states of nature”, that is (denoted 

“outcome j”, “outcome j + 1” in Figure 8). In other 

words, the event is considered a random event.

To appreciate now the approaching methodological 

challenges in using models to guide the making of 

decisions on environmental policy and management, 

some classifi cations of the extent, depth, and 

qualitatively diff erent “manifestations” of Uncertainty 

must be introduced. Th at is the purpose of Figure 8. 

Within its idealized framework, therefore, uncertainty 

surrounding the analysis of a decision can be classifi ed 

into three signifi cantly diff erent categories (for 

example, Krayer von Krauss and Janssen, 2005):

(i) Th e exhaustive set of (discrete) possible 

outcomes of the event (the future 

states of nature) is known, as too are 

the probabilities of occurrence of each 

outcome; this has been referred to as 

Statistical Uncertainty.

(ii) Th e exhaustive set of outcomes is known, 

but not all of the outcome probabilities, 

i.e., Scenario Uncertainty.

Archetypal tree graph of formal, mathematical, 
decision analysis: green square node for the 
decision now to be made; black branches emanat-
ing from this green node denote the alternative 
courses of action; red circular node for the future 
(unknown) state of nature, which event each 
action from the decision node will encounter; 
blue branches emanating from this red node 
represent the alternative outcomes of the future 
random event defi ning the future state of nature; 
and standard or regulation (S), above which the 
given combination of decision and event outcome 
will be deemed unsatisfactory (cross-hatched side 
of bar S) as opposed to satisfactory for those 
combinations ending up below bar S.

Figure 8
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(iii) Not all of the outcomes are known, ergo 

nor can the set of probabilities be known, 

i.e, Ignorance.

Statistical Uncertainty

Th e analysis of decisions under Statistical Uncertainty 

is taught to undergraduate civil and environmental 

engineers. Th ey have practical needs for solving 

the ubiquitous problem of “decision-making under 

uncertainty”, such as assessing ground conditions (the 

uncertain future state of nature) prior to embarking on 

a construction project (the decision). In contemporary 

and vastly more complex schemes this classical form 

of decision analysis appears in what today are called 

environmental Decision Support Systems (DSS; see, 

for example, Matthies et al, 2007), well exemplifi ed by 

the work of Reichert et al (2007) on river rehabilitation, 

and elaborated upon in Box 6.

Likewise taught to undergraduate civil and 

environmental engineers — and likewise dealt with 

in more detail in Box 6 — is the use of mathematical 

programming and optimization: to decide where 

to construct wastewater treatment facilities in a 

watershed with degraded water quality and how large 

to build each facility, including under uncertainty, 

as illustrated in Harrison’s proposal of what he calls 

Bayesian Programming (Harrison, 2007). Th e current 

popularity of “triple bottom line” accounting in 

discriminating the less from the more unsustainable 

courses of action (Elkington, 1998) can indeed 

encourage the view of “becoming less unsustainable” 

as just such a matter of mathematical programming, 

where now the constraints (or goals) to be formally 

satisfi ed (or optimized) are those very bottom lines: of 

{environmental benignity}, {economic feasibility}, and 

{social legitimacy} (as we shall see in our subsequent 

Challenge # 11).

In the traditions of both decision analysis and 

mathematical programming, the urge is to encapsulate 

in mathematical form (within M) the attitudes of 

stakeholders towards Statistical Uncertainty. In 

particular, attitudes towards welcoming or shunning 

risk are encoded mathematically as utility functions. 

Exactly how far this common impulse should propel 

models, simulation, and computation into mimicking 

the human dimension is a matter for careful 

judgement, as addressed further in Box 6, again under 

Challenge # 11, and beyond (for it raises important 

ethical issues, amongst others).

Scenario Uncertainty

Th e task of fi nding textbook-style the best course of 

action, u*, given value-imbued preferences encoded in 

M and the desired outcomes of y
d
, is not indispensable 

to a DSS, however. Finding future outcomes y, given 

a value-free M and an accompanying more or less 

sophisticated set of scenarios for u, i.e., solving for 

textbook forecasting, can just as well serve the needs of 

a DSS (as again Box 6 shows). Th is was the basis of some 

of the work of the Millennium Ecosystem Assessment 
(Carpenter and Folke, 2006), and that of Schröter et 

al (2006) on the vulnerability of supplies of ecosystem 

services across Europe in the face of future climate 

change scenarios (Chapter 2.1).

Looking back to the formal archetype of Figure 8, at the 

branches of outcomes for the uncertain future state of 

nature — scenarios, in eff ect — Liu et al (2009) have this 

to say:

Th ere are no “true” likelihoods associated 

with scenarios in the sense that scenarios are 

not forecasts/predictions but descriptions of 

plausible alternative futures. However, for 

the purpose of risk assessment, scenarios can 

be categorized on whether they are possible, 

realizable, or merely desirable. Possible 

scenarios encompass all that are feasible; 

realizable scenarios are feasible scenarios 

operating under a set of defi ned and specifi ed 

constraints; and desirable scenarios are possible 

scenarios that may not necessarily be feasible or 

realizable (Godet and Roubelat, 1996). In risk 

management, pair wise comparison of these 

relative “likelihoods” of the scenarios can be 

used to determine the priority of scenarios, 

for risks generally increase with scenario 

likelihoods and the undesirability (or severity) 

of consequences of scenarios.

In short, we can have uncertainty as type (ii) above, 

namely Scenario Uncertainty, typically here in the 

form of not knowing the probability that a forecast 

of future climate and meteorological patterns from a 

Global Circulation Model (GCM) will, in the event, 

turn out to be the case, as discussed in Box 6.

Whether either the discussion of Liu et al (2009) or 

the brief accounts of the two associated case studies 

in Box 6 imply Scenario Uncertainty strictly in the 

sense of Krayer von Krauss and Janssen (2005), is open 

to debate. What is clear is that nearly all works on 

decision-making under uncertainty have been studies 
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BOX 6

Decision Support Systems (DSS), Models, and the Human Dimension:
Points of Departure for Responding to Challenge # 10

We begin with a question that will come to pre-occupy the discussion of this Paper regarding 
“Science and Engineering for Policy and Society”. To what extent can, and to what extent should, the 
human dimension be formally encoded in the model (M)?

This Box has four segments, each serving the purpose of illustrating, through case studies, the role 
of models in supporting the making of decisions. Each segment also has the purpose of developing 
a response to the foregoing question. The fi rst segment points to case studies incorporating 
human preferences formally into M, and in a conventional manner. These mathematical accounts of 
preferences are then retracted from the model, successively in the two subsequent segments of this 
discussion. Finally, in the fourth segment, the human dimension is re-inserted into an M, and in a 
rather unconventional manner.

Models Within Formal Decision Analyses

Within the formalism of Figure 8, the model M relating outcomes (y) to decisions (u) is typically, as it 
is in the case study of Reichert et al (2007), a graphical web of elementary cause-effect couples of the 
probability (or Bayesian) network models, such as developed in the water and aquatic ecology sectors 
by Reckhow (1999) and Borsuk et al (2004, 2006). Expression of the elementary cause-effect couples 
in such network models may be derived in a variety of ways, as already noted under Challenge # 1, and 
with the following increasing levels of computational sophistication. First, they may simply be derived 
from expert judgement. Second, they may come from a regression relationship of this binary pair, i.e., an 
approximation identifi ed from controlled experimentation with a full science-based model articulating 
the mechanisms by which single input stimulus u induces a response in single output y. The single u-y 
couple may be a part of a multivariable model accounting for multiple inputs and outputs (u,y), such 
as, for example, the fl oodplain vegetation model in Reichert et al (2007). Third, a differential-equation 
model may be available for simulating the cause-effect (u-y) relationship, without any of the preceding 
approximation and simplifi cation.

Each cause-effect couple is an uncertain approximation of what may be the truth of the matter, hence it 
is assigned a probability of being correct. Outcomes from the probability network model, of concern to 
all holding a stake in the decision to be made, are likewise characterized by probability distributions. The 
attitudes of these stakeholders to Statistical Uncertainty, in particular, towards welcoming or shunning 
risk, are incorporated into the formal mathematical analysis of the DSS through the conventional means 
of elicited utility functions (in this matter, Reichert et al (2007) cite the procedures of von Winterfeld and 
Edwards (1986)).
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BOX 6

Models Within Mathematical Programming

Generating optimal such decisions under Statistical Uncertainty has been treated in archetypal 
form in Burn and McBean (1985), for example. In the contemporary literature we can fi nd the same 
problem treated as a matter of Bayesian Programming (Harrison, 2007), wherein all outcomes and 
their probabilities for all random events are assumed known, i.e., Statistical Uncertainty, founded 
on the classical form of the decision tree of Figure 8, with a multi-stage sequence of {... -decision-
outcome-decision-outcome- ...} over time. Harrison employs the equally classical model M of 
Streeter and Phelps for longitudinal, spatial variations in river water quality — remarkably durable, 
given its original publication in 1925.

In the context of today’s DSS, in particular, those supporting implementation of Integrated Water 
Resources Management (IWRM) and the search for less unsustainable arrangements of urban water 
infrastructure, methods of mathematical programming are currently being turned to the generic 
problem of multi-criteria analysis (Jakeman et al, 2006). The presently popular appeal to “triple 
bottom line” accounting in discriminating the less from the more unsustainable courses of action 
(Elkington, 1998) illustrates immediately the involved, tortuous nature of a multi-criteria analysis. 
Decisions should be seen by stakeholders to be {environmentally benign}, {economically feasible}, 
and {socially legitimate}. Driven by the European Union (EU) Water Framework Directive, with its 
emphasis on participatory approaches to watershed management, Giupponi (2007) argues the case 
for a new generation of DSSs:

The proposed approach can be applied in decision processes in which a group of people (i.e., 

decision makers and stakeholders), share a common conceptual framework and procedure, to 

structure the problem, discuss the decision and communicate the proposed solution.

Following public release of the software, entitled mDSS, with “m” signaling “multi-criteria analysis”, 
Giupponi (2007) records the fact that out of 1000 contacts through the project website, fewer than just 
20 downloaded the software, all of whom were working in an academic environment. This experience, 
as he says, is typical of the fi eld of environmental DSS as a whole, where adoption of these systems 
“by the targeted competent authorities ... is still substantially lacking” (Giupponi, 2007; p 256).

In the foregoing examples of how considerations of Statistical Uncertainty have been accommodated 
in situations of decision support, the scope and complexity of the model M have been subordinated 
to the (higher) task of fi nding the preferred strategy, u*, including its property of being robust 
in the face of such uncertainty. Algorithmic interest was focused on achieving the attribute of 
“preferred”, even “best”, about u*, whether in the mathematical domain of formal decision analysis, 
or optimization, or the combination of the two (as in Harrison (2007), for example).

In general, the purpose of any associated DSS is to render facile this computational burden, thus to 
focus the attention of stakeholders on matters of trading gains in achieving one goal against gains 
in attaining some other (incommensurate) goal, notwithstanding the fact that some of the value 
judgements of a stakeholder, for example, her/his attitude towards risk, may have been elicited from 
that individual and encoded in a computational algorithm.
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BOX 6

On balance, projection of the human dimension into the formalities of M is here somewhat less 
than in the foregoing account of formal decision analyses. That projection will be foreshortened yet 
further in the following segment of this discussion.

Scenario Analysis

In their review of formally developing scenarios for environmental impact assessment, Liu et al 
(2009) are guided by the Intergovernmental Panel on Climate Change (IPCC) defi nition of a scenario, 
as:

[A] coherent, internally consistent and plausible description of a possible future state of the 

world. It is not a forecast; rather, each scenario is one alternative image of how the future can 

unfold.

Standing back from the foregoing focus on the task of fi nding u*, stakeholders can just as ably form 
their preferences on the basis of straightforward forecasts (y). The candidate alternative policies (u) 
can be assumed (as components of scenarios), threaded through a simulation model (M), and the 
outcomes (y) assessed by each stakeholder in respect of their proximity or otherwise to the hopes or 
fears of that stakeholder for the future.

In principle, the value judgements of stakeholders can remain external to the software, as they do in 
two similar integrated assessments of the impacts of future climate change on watershed behavior 
(Krysanova et al, 2007; Wilby et al, 2006). Both assessments concern themselves with the intersection 
between climate change and agricultural land use: the former (Krysanova et al, 2007) in respect of 
impacts of climate change on crop yields across the Elbe basin in central-north Europe; the latter in 
respect of potential consequences for in-stream water quality associated with the nitrogen cycle in a 
small, lowland watershed in the UK (Wilby et al, 2006).

The one acknowledges uncertainty through forecasts deriving from three GCMs, each themselves 
driven by the same pair of IPCC emission scenarios (Wilby et al, 2006). Since no probability is 
attached to any of these six future states of nature occurring, the assessment would be said to have 
been conducted under the condition of Scenario Uncertainty. The other case study accommodates 
uncertainty in the future pattern of climate change by taking a single forecast from a single Global 
Circulation Model (GCM) for a single IPCC scenario and then, through a downscaling procedure, 
constructs 100 (random) variations about this single theme (Krysanova et al, 2007). Interpreted within 
the archetypal decision-tree framework of Figure 8 we should have 100 branches emanating from 
the random (future) event nodes, each with a probability assignable according to the probability 
distribution assumed for the sampling of the 100 variations on the single theme — but no probability 
for that strategic theme proving true, in the event. Should you be a farmer from Lower Saxony 
viewing the changes of crop yield forecast by the model M, standing on the threshold of your 
decision node in Figure 8, with an interest in the fate of your grandchildren in the decade of 2046-
2055, you might well prepare to abandon cultivating winter wheat now, while taking up cultivation of 
silage maize — but you would essentially be banking on the single, strategic scenario becoming true 
(Krysanova et al, 2007).
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BOX 6

Human Agency, Culture, and Values in the Model

In stark contrast to the absence of a human dimension from the models (M) of the Elbe study, 
Janssen and Carpenter (1999) populate their conventionally simulated watershed (for the migration of 
nutrients from the land surface to a water body) with farmers, as the agents in an agent-based model. 
Each of these agents — in the computer world — perceives the state of the simulated environment 
and receives signals from the market for agricultural produce; interprets this in terms of his/her 
individual (simulated) mental model of the Man-Environment relationship, according to the plurality 
of perspectives in Cultural Theory (for example, Thompson, 1997); is capable of learning from the 
actions of neighbors, and therefore engages in a rudimentary form of social transactions (if not 
negotiations); and acts accordingly, purchasing fertilizer and applying it to the land, affecting thus 
the future state of the (simulated) environment and economy. This is, of course, little different in 
algorithmic intent to Bennett and Tang’s (2006) use of an IBM to simulate the migration of elk about a 
landscape, with the elk being treated as boundedly rational agents. It is also, however, a manifestation 
of what was intended in response to Challenge # 5 (Chapter 2.5) as the benefi t to be derived from 
fusing future developments in environmental modeling with those in the social (and biomedical) 
sciences.

Janssen and Carpenter’s interest was in studying the resilience of coupled natural-human systems, 
not in the matters of making decisions under uncertainty and developing the software of DSS. 
Nevertheless, their work allows us to reveal something more of the continuum of the human 
dimension (for comparison and contrast with that of uncertainty, as it motivates the discussion of 
this Chapter 4.1). This continuum can now be seen to span from the pole of “human choice and 
subjective values” to that of “utterly dispassionate, objective algorithmic logic”. The former can be 
embedded into the latter, almost as if to make subjectivity objective (as in the model of Janssen 
and Carpenter (1999)), whereas the choice of how to incorporate and parameterize objective, 
constituent, scientifi c hypotheses in M can be revealed as subjective and subject to differing cultural 
outlooks on the Man-Environment relationship (van Asselt and Rotmans, 1996; van Asselt and 
Rotmans, 2002).

Our models (M) are normally staunchly considered “value-free”. It will be controversial to most of 
us, therefore, to read this from van Asselt and Rotmans (2002):

An example of alternative quantities in perspective-based model route is the value for the 

CO2-fertilisation factor �, which ranges from 0 (i.e., no effect) in the egalitarian model route, 

to 0.7 (i.e., substantial effect) in the individualistic model route.

where “egalitarian” and “individualistic” are two of the perspectives of the same Cultural Theory as 
that informing the computational studies of Janssen and Carpenter (1999).

In his summary of the 2004 Symposium on Uncertainty and Precaution in Environmental 
Management, van der Sluijs (2007) refers to this inter-penetration of the objective and the subjective 
as the “monster” of uncertainty at the Science-Policy interface:
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The categories that we thought to be mutually exclusive and that now tend to get increasingly 

mixed up to create monsters in the science-policy interface include: knowledge versus 

ignorance, objective versus subjective, facts versus values, prediction versus speculation, 

science versus policy.

Drawing upon certain philosophical and anthropological considerations, he suggests there are four 
styles in which such a monster, or abnormality, is treated in a community, such as that of scientists, 
engineers and those constructing computational models of environmental systems (van der Sluijs, 
2007): one is to expel the problem, i.e., to presume the uncertainty is merely of a transient nature, 
redolent of the treatment of uncertainty in the sound-science paradigm discussed in Fisher (2007); 
another is to adapt the problem, by fi tting it back into the (above) categories, notably through 
attempts at quantifying the uncertainties, just as in the present discussion of this Box and elsewhere 
in this White Paper.

Projection (retraction) of the human dimension into (from) the model (M) has something of the 
same “monster-like” character about it, as apparent in Challenge # 11 on sustainability of the built 
environment (in Chapter 4.2).
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in decision-making under Statistical Uncertainty, as 

defi ned above. Few systematic analyses in using models 

for environmental decision-making under Scenario 

Uncertainty have been reported; and Liu and her co-

authors themselves conclude that much research on 

this is yet to be undertaken (Liu et al, 2009).

Ignorance

Extrapolation then to the third category of uncertainty, 

would suggest that fewer studies still can be expected 

to be found for the problem of decision-making under 

Ignorance. And this is in fact so.

When Lempert (2002) calls for “A New Decision 

Sciences for Complex Systems”, he comes close to this. 

His “deep uncertainty” resonates with our foregoing 

defi nition of Ignorance (in the decision context), 

but it also has resonance with the (rather diff erent) 

notion herein of epistemic uncertainty, or structural 

error/uncertainty, placed elsewhere therefore at the 

heart of Challenge # 8 (in Chapter 2.8). Th at kind 

of uncertainty, in its deeper, vaguer manifestations 

— approximated technically by the {acknowledged 

unknown} in the model (M) — may prompt the 

question of how to design a model expressly for the 

purposes of discovery of our ignorance (Beck, 2002): 

for “probing the shores of ignorance” (Dennis et al, 

2002); and decidedly in a policy-proximate setting 

(Dennis, 2002).

Contradictory Certainties

Even the category of Ignorance can be sub-divided 

according to van Asselt and Rotmans (2002), along 

the lines of increasing uncertainty, expressed 

colloquially as: “We don’t know what we do not 

know”; “We will never know”; to “We cannot know”. 

From some point along this continuum we can choose 

to single out a fourth in our categories of Uncertainty, 

as follows.

So great is the uncertainty in the decision framing that:

(iv) More than one version of Figure 8 is 

actively maintained and promoted, each 

alternative caricatured as having the 

certainty of but a single outcome branch 

emanating from the future uncertain state 

of nature, i.e., a plurality of Contradictory 

Certainties (Th ompson, 1985).

Here (with some exaggeration) we are in a situation 

of arch disagreement: “What I know is the truth; 

what you know is utterly false”. Th is is readily 

recognizable as a euphemism for disagreement not 

so much about the model and science from which it 

is drawn, but about what is desired as the outcome 

of the decision context, born of diff ering views on 

the Man-Environment relationship. Were a problem 

to lie within this seemingly paradoxical situation of 

Contradictory Certainties, we might fi nd a plurality 

of such statements, each buttressed indeed by a quite 

diff erent — but “certain” (in the eyes of its proponent) 

— model (M) (Th ompson and Gyawali, 2007).

As we have progressed, then, from Statistical 

Uncertainty through Scenario Uncertainty and on 

into the more profound, more abundant uncertainty 

of Ignorance, our discussion has come to a point 

under Contradictory Certainties where the formal 

uncertainty of any particular model (M) is technically 

nil, while the decision context is replete with the 

uncertainty of disagreement amongst the various social 

groupings of stakeholders (some of whom might be the 

IPCC assessment “experts” said to be in disagreement 

in Patt (2007)). We have also reversed in this, backing 

away from the relative security of consensus on the 

decision framework (and chosen model of analysis), 

to the strident dissonance of competing schools of 

thought — on both the decision context and the 

model.32

However discomforting and unpalatable this might 

appear, two points are worth noting. First, it is already 

known that, as a consequence of a lack of model 

identifi ability (Challenge # 6; Chapter 2.6), forecasts 

from a model of Lake Ontario’s ecosystem, for instance, 

can give rise to what are statistically confi dent, but 

contradictory, statements about future behavior (from 

equally plausible candidate parameterizations of the 

same model structure; Beck, 1987).

Second, and strategically much more important in 

developing responses to Challenge # 10, confronting 

uncertainty as Ignorance, or as Contradictory 

Certainties, as opposed to Scenario or Statistical 

Uncertainty, would seem to call for altogether 

diff erent ways of developing environmental models 

32  Viewed from yet another perspective — to gauge 
the roles of models and the forms of uncertainty at the 
Science-Policy interface — Petersen (2006) has used a two-
dimensional categorization of decision contexts according to 
the presence/absence of consensus, across (a) the (subjective) 
values shared in the heterogeneous groupings of stakehold-
ers, and (b) the schools of scientifi c thinking.
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and evaluating their trustworthiness in support of 

decision-making.

Observatories, Observations, Updating,

and Adaptation

What the Environmental Observatories, the 

environmental cyber-infrastructure, and models (M) 

can collectively be to control and decision-making in 

real-time in Chapter 3 (and the preceding Challenge 

# 9), so they might be to all of this policy material 

and decision-making in slow time, for the present 

Challenge # 10.

At the core of the DSS prepared by Reichert et al 
(2007) for river rehabilitation is a probability (Bayes) 

network model (M), comprising a web of elementary 

cause-eff ect (u-y) couples with assigned probabilities 

of having given rise to observed behavior (if not 

probabilities of being accounts of the “truth of the 

matter”). As blocks of policy-driven data accumulate, 

as a consequence of the decisions being made, decade 

upon decade, say, learning in a Bayesian framework 

implies updating of those probabilities through 

reconciling the data with the model. Hence the 

distributions of probabilities for the policy outcomes 

(y) may be adapted over time and  presented to 

stakeholders for their consideration and negotiation 

via the DSS. Th ough M therein is quite diff erent in 

form from the partial diff erential equations of the 

VHOMs discussed by Neuman (2003), for the purposes 

of policy-forecasting in respect of the (very) long-term 

storage of high-level radioactive wastes, the principle of 

updating is identical.

Th e “blocks of policy-driven data” gathered over spans 

of years from the EOs are to decision-making in slow 

time what the observations at instant t are to DDDAS.

Th e sequential character of decision-making, of 

{... -decision-outcome-decision-outcome- ...}, is 

ubiquitous and indispensable to the notion of adaptive 

management, which embodies the principle of learning 

through the probing and experimental component of 

a policy (Holling, 1978). It is equally relevant, whether 

in real or slow time, as Box 4 in Chapter 3 is at pains to 

point out. Once the decision has been taken, everything 

entailed in its unfolding consequences — the science, 

the structure and trustworthiness of the model, the 

effi  cacy of the regulation and policy, the community’s 

understanding of itself, its relationship with the 

environment, the model, and so on — will amount to 

an opportunity for learning and adaptation, ahead of 

the subsequent decision (Petersen et al, 2009). Adaptive 

policy design, to identify key uncertainties in ongoing 

ecosystem management, of both marine and terrestrial 

animal populations, and including through the use of 

simulation models, has both a substantial history and 

an active current research agenda (for example, Lessard 

et al, 2005).

Few, if any, DSS for environmental policy appear to 

deal with this inevitably sequential nature of making 

decisions, however. Policy analysis anticipates, in eff ect, 

a once-and-for-all decision, or one-stage decision tree, 

as Harrison (2007) observes in introducing his multi-

stage Bayesian Programming procedure. Fewer still 

concern themselves with estimating the value of the 

information acquired through monitoring between one 

decision and the next.33

Looking out over a policy horizon of 45 years, for a 

river subject to pulp-mill effl  uent discharges, with a 

fi rst decision at the beginning of year 1 and a second 

due at the beginning of year 15, Harrison estimates the 

worth of monitoring water quality between the two 

decision points to be equivalent to some 4-5% more 

pulp production for a given annual sum of transient 

violations of dissolved oxygen standards, or to a 

reduction of 10% in the latter for a given level of the 

former (Harrison, 2007). He goes on to argue, with 

an eye on the kinds of shift s in ecological regimes of 

interest to Lessard et al (2005) and their colleagues (for 

example, Carpenter and Folke, 2006), that the value of 

such information from monitoring — and of adaptive 

management itself — could be signifi cantly greater, but 

that extension of his two-stage to a multi-stage analysis 

would quickly become computationally prohibitive for 

just a handful of decision stages (Harrison, 2007).

None of the DSS in Box 6 deal with the issue of 

scientifi c visualization for comprehending the 

implications of model uncertainty, which is so 

prominent in the recommendations of NSF’s blue-

ribbon committee on Simulation-Based Engineering 

Science (NSF, 2006; see also Lermusiaux et al, 

2006b). None address the role of such visualization 

in communicating model and decision uncertainty 

to stakeholders, one of the two motivations for the 

work of Krupnick et al (2006). But even in the midst of 

33  Something to which Gabbert (2006) alludes in 
arguing the case for making more cost-eff ective reductions 
in parametric uncertainty in the RAINS integrated assess-
ment model, under the Clean Air for Europe (CAFE) policy 
program.
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decision-making in slow time — the 2004 Symposium 

on Uncertainty and Precaution in Environmental 

Management — one of the key insights of van der Sluijs 
(2007) is the essential need for “[s]ystematic long-term 

monitoring and learning”.

Th e observing capacity of the EOs and their attaching 

cyber-infrastructures, of such obvious immediacy 

in respect of real-time control, is just as necessary 

in the slow time of policy formulation, assessment, 

adaptation, assessment, adaptation, and so on.

4.2 Th e Long View: Towards Sustainability of the 
Built Environment

Begun under Challenge # 10, the changing emphasis in 

our discussion will continue, extending further away 

from the needs of Science alone, towards inclusion 

of those of Policy and Society, as we now compose 

Challenge # 11. Th is will be the last of our “technical” 

challenges. For Challenge # 12 (to follow in Chapter 

4.3) relates to challenges to ourselves, as a community 

of professionals involved in building and applying 

models of environmental systems.

Triple Bottom Line: Just Another Mathematical 

Program?

Over the two decades since the Brundtland 

defi nition was famously given to the notion of 

“sustainability”, scientifi c enquiries thereinto have 

come to acknowledge that what matters is neither just 

{environmental benignity} nor {economic feasibility}, 

but also {social legitimacy} of action, including those 

actions conditioned upon the outcomes of models. 

Given the foregoing discussion of decision support 

systems, and origination of these three {bottom lines} 

of sustainability (Elkington, 1998) in the quantitative 

methodology of accountancy, our instinct might well 

be to formulate problems of sustainability as ones of 

our textbook mathematical problems. Th e task would 

be to fi nd preferred decisions (u), given a model (M) 

and desired outcomes (y), by solving the following 

caricature of a mathematical program:

Find those u minimizing {unsustainability over the 

generations}

Subject to satisfying the constraints of

{environmental benignity}

{economic feasibility}

and, especially, {social legitimacy}

Were we to formulate the task in this way, it is 

clear that a good deal — arguably too much — of 

people’s personal, subjective attitudes towards risk, 

uncertainty, the value of an environment, and so on, 

could have been quite inappropriately subordinated 

to mathematical approximations. Such insertion of 

“human agency, culture, and values in the model” was 

one of the topics singled out for consideration in Box 6 

of Chapter 4.1. Inter-penetration of matters objective 
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and matters subjective was discussed, in respect there 

of uncertainty at the Science-Policy interface (van der 

Sluijs, 2007).

At the heart of Challenge # 11 lies a similar inter-

penetration, of matters personal and matters 

computational, in models at the Science-Society 

interface. Driving in the one direction, computational 

technology and soft ware have enabled the behavior 

of individuals and society to be incorporated into 

the model M (witness Janssen and Carpenter, 1999; 

Lempert, 2002). Moving in the counter direction, the 

general public and scientifi cally-lay individuals may 

increasingly be encouraged to assume the right, if not 

the obligation, to judge the quality and implications of 

those technical and scientifi c M, all in the interest of 

attaining social legitimacy of policy actions.

If there has been discomfort in the scientifi c 

community over the handling of uncertainty (van 

der Sluijs, 2007; Box 6), so too should there be in the 

engineering community over accommodating the 

computational treatment of personal preferences — as 

in the above caricature of a mathematical program. In 

responding to the challenge about to be introduced, 

those who construct and use models of environmental 

systems may eventually be drawn by considerations 

of {social legitimacy} into the unfamiliar territory of 

unusual and novel questions of ethics. Th is human 

dimension to the use of models will come to dominate 

in the following. Uncertainty there will be too, in 

more than suffi  cient volume and depth; but we shall 

henceforth largely take for granted the need for 

analyzing it, coping with it, and going forward in spite 

of it.

More immediately, the builders and users of models 

may be projected into new ways of conceiving of, if not 

simulating, the behavior of environmental systems, 

because of signifi cant changes in the conception of 

what constitutes {environmental benignity} in the 

triple bottom line of the foregoing mathematical 

program. Motivated by a metaphor, we conceive of 

a “grand conjecture” in the following — a salient 

into terra incognita — and then ask: how might 

observations be collected, and how might computations 

with what kinds of models, be employed to corroborate 

or refute such a conjecture. First people, and then 

technology, will need to be put more obviously into 

the frame of consideration as to what might constitute 

future challenges for environmental modeling.

We shall need to move with ease between ecological 

and engineering thinking, between animal and human 

agency in the rural and the urban landscapes, and 

between what diff erentiates a “natural” environment 

from a “built” environment (as in infrastructure). For 

some, such a blurring of distinctions between concepts 

and disciplines may be just as discomforting as the 

ethical matters that will arise at the very end of this 

discussion.

Re-engineering the Built Environment as a Force for 

Good in the Natural Environment

We begin by picking up again the biological metaphor, 

already familiar from Challenge # 5, and seemingly 

everywhere appropriated.

Th at projects and products have life-cycles is a 

commonplace. We made use of it in developing the 

cases for Challenges # 9 and # 10. Having emerged in 

the late 1960s, life-cycle assessment (Frankl and Rubik, 

2000) sees itself as addressing a form of cradle-to-grave 

analysis, which in turn can be extended to the concept 

of “cradle-to-cradle” analysis (Stahel, 1997; McDonough 

and Braungart, 2002). Much vaunted too is the notion 

of biomimicry, with its proposed access to the vast 

store of intellectual seed-corn for the technological 

innovations of the Second Industrial Revolution 
(Benyus, 1997). Industrial Ecology has been formally 

in place as an academic subject for two decades (Ayres 

and Ayres, 2002); the Journal of Industrial Ecology was 

fi rst published in 1996. Th e city can be conceived of as 

having not only a calculable ecological footprint (Rees, 

1992; Rees and Wackernagel, 1996) but also an appetite, 

a metabolism, a pulse, and so on (Wolman, 1965; Beck, 

2005a; Barles, 2007; Bettencourt et al, 2007).

Th inking in terms of the attributes of an organism 

and of the manner in which that organism lives and 

prospers harmoniously within its environment is, we 

now appreciate, a powerful metaphor for engineering 

and industrial design. It augments the image of the 

clockwork mechanism as the earlier epitome of the same, 

manifest itself in the above caricature of a mathematical 

program. Th e image of the “sentient organism in the 

ecosystem” introduced in Chapter 2.5 (Challenge # 5) 

can be transcribed productively into that of the “{city 

and its infrastructure} in the {watershed}” (Beck et 

al, 2009). Th is alternative conceptual framework, for 

thinking about re-engineering the built environment, is 

neither an entirely new metaphor nor yet exhausted in 

its potential to reveal novel avenues of further research. 

It provides much of the impetus for the expression below 

of Challenge # 11.
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Th e Challenges

Beyond exploiting the biological metaphor, we need 

thoroughgoing inter-disciplinarity in our thinking. 

Challenge # 5 also called for the pursuit of insights 

into the generic, dynamical properties of systems’ 

behavior. Its discussion culminated in advocacy 

of further synthesis in classical systems thinking, 

amongst the construction and use of models across 

the Environmental, Biomedical, and Social Sciences 
(Chapter 2.5). We drew upon the work of Hawes and 

Reed (2006) and their vision of a cyber-infrastructure 

associated with agency in terrestrial and agricultural 

systems, to suggest it was but a short step from there 

to the metaphor of the city as a “large animal grazing 

in its pasture”. Th is, Rees and Wackernagel (1996) 

had proff ered earlier, as a means of engaging us in 

conceiving of the rather successful innovation of the 

urban ecological footprint — massive, of course, for 

cities such as Paris, New York, and the like. Needed 

too, then, is the kind of thinking already exposed in 

the culmination and synthesis of Challenge # 5: the 

capacity for moving eff ortlessly amongst disciplines, 

metaphors, and images.

About 50% of the world’s population is now (2009) 

classifi ed as urban. Much of the built environment 

can be equated with infrastructure for sustaining the 

city’s metabolism. And while Kaye et al (2006) may 

write of how “footprints depict negative impacts of 

cities without accounting for the probable effi  ciency of 

dense urban living”, cities and the built environment 

are most likely viewed (in the popular mind-set) as 

inherent environmental “bads”, with no extenuating 

circumstances.

Yet things do not have to be this way, no matter how 

hard it may today be to conceive of cities as forces 

for good in the environment. Far from the burden of 

infrastructures having to compensate for the ills of 

cities, the two should “act” deliberately to contribute 

positively to enhancement of the natural environment 

about them. Let us take therefore the metaphor of 

Rees and Wackernagel (1996), with its obvious basis in 

ecology, and see just how far it can be pushed to serve 

the purposes of an engineering turn of mind.

Viewed as an organism, the city takes in its “daily 

bread” and “daily water”, together with life-sustaining 

“breath”. And we have engineered the return of the 

residuals of this metabolism to the air, water, and land 

environments surrounding the city. In the Global 

North, a good deal of the city’s daily water is used to 

convey the residuals of its daily bread — as wastewater 

— away from the confi nes of the urban space, so that 

citizens can lead healthy and productive lives. Much 

technological eff ort has been invested in treating that 

wastewater, not always to the good of the air, missing 

an opportunity to benefi t the land, while not being a 

wholly unmitigated good for the water environment.

Imagine now the generic animal of Rees and 

Wackernagel as specifi cally a bull. Th e “bull” of intense 

social and economic activity in the city might be 

shod in the future with the “padded athletic trainers” 

of re-engineered infrastructures and imbued with a 

technological deft ness and intelligence suffi  cient for 

restoring the business of running the environmental 

“china shop” in which it charges about. Pushing the 

metaphor yet further, the city might even profi tably 

expand the shop’s operations, by becoming a net 

contributor to some of the watershed’s ecosystem 

services. Projections show that, by the compliance 

date (2015) of the EU Water Framework Directive, 

Paris might well look like the bull in the restored but 

vulnerable china-shop of the Seine watershed (Billen 

et al, 2007a,b; Even et al, 2007a), yet not at all self-

evidently shod with padded trainers, nor necessarily 

in possession of the intelligence and technological 

deft ness required for expanding the shop’s operations.

With the ground thus prepared, our next Challenge 

can be cast upon it.

Challenge # 11:

Since the greatest debate of our times is the 

“sustainability debate”, with its signifi cant 

implications for the design and operation 

of the built infrastructure at the interface 

between Man and Environment (most 

conspicuously so at the urban centers of 

socio-economic activity), how best should 

the Environmental Observatories be 

deployed and, more specifi cally, what kinds 

of models should be developed in order to 

promote a better strategic alignment of 

the study of urban metabolism with that 

of ecosystem services, all within the web of 

global biogeochemical cycles? How too, in 

the widest of possible terms, can innovations 

in information and communication 

technologies (ICT) — as realized in the 

environmental cyber-infrastructure — 

lead to tangible gains in reducing the 

unsustainability of current patterns of socio-

economic behavior?
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How indeed could the built infrastructure be re-

engineered to restore the natural capital and ecosystem 

services of the nature that occupied the land before the 

city? How could it be re-engineered to enable the city 

to act as a force for good, deliberately to compensate 

positively for the ills of the rest of Man’s interventions 

in Nature?

How in particular, to echo Challenges # 4 and # 5, 

can the inter-disciplinary insights of applied systems 

analysis at the conjunction of ecology, computational 

science, and biomedical science — of damage 

limitation, self-repair and self-replication, and their 

relationships with the notion of ecological resilience 

— be developed and then exploited to answer such 

questions? In the face of all manner of threats, how can 

the technological parts of the infrastructure (organs 

and cells) within the city-infrastructure couple (body 

of the organism) be designed to function as does an 

auto-immune system (or as might a “self-healing 

energy infrastructure”; Amin, 2001)?

How can cities of the Global South avoid adopting 

the same historical technological trajectory, and sell 

back to the Global North what they have learned from 

taking another path? How, more profoundly, can the 

engineering of city infrastructure be deployed expressly 

so that those at the bottom of the pyramid of dignifi ed 

human development (Maslow, 1943) may be brought to 

a level where they care to engage in such a debate, over 

such a grand challenge for the next century — of cities 

as forces for good — beyond their desperate needs of 

survival for just today and tomorrow?

One scenario — one candidate future path for cities of 

the Global North; one grand conjecture in response to 

this host of questions — runs as follows.

If the water- and nutrient-return infrastructures 

of those cities could be uncoupled and kept strictly 

separated (from the household or offi  ce block onwards), 

eventual recovery of a “perfect fertilizer” product 

from a re-arranged wastewater treatment plant can be 

imagined (Beck et al, 2009). Th is would be tantamount 

to realizing “Uncoupling [of] the Nutrient and Water 

Metabolisms of Cities” as called for in Box 1 of Chapter 

2.1 and, once uncoupled, of then seeking to lower their 

respective rates of metabolism.

While this perfect fertilizer scenario is but one 

candidate path away from unsustainability, a number 

of conjectured benefi ts might fl ow therefrom, 

including, for instance:

(i) Th e product of a perfect fertilizer would 

generally be destined for direct return 

from the wastewater treatment plant 

to the agricultural sector, just as the 

city of Paris achieved through other 

means 150 years ago (Barles, 2007). 

From this should derive the benefi t 

of rectifying some of the distortions 

wrought by the city in the pre-city 

global cycling of materials (nutrients, 

N and P, in particular) and exacerbated 

(arguably) by the advent of the water-

based paradigm of the nutrient-return 

infrastructure of the 20th Century (see 

Box 7).

(ii) Given intelligence and (metaphorical) 

deft ness of movement, i.e., the enhanced 

authority of real-time operational control 

arising from such re-engineering of 

the built environment (and Challenge 

# 9), cities could from time to time re-

allocate the recovered fertilizer product 

as nutrient supplements discharged 

to the river. Th e goal would thus be to 

contribute positively to the ecosystem 

services provided by the watershed’s 

aquatic environment.

Our metaphor of “sentient beings within their 

environments” may now have been pushed to breaking-

point.

Nevertheless, in conjecturing upon these benefi cial 

consequences, what kinds of Environmental 

Observatories, and what kinds of models, would best 

assist in evaluating their conception and their promise? 

How should we design and operate an EO to gauge 

progress in compensating for the kinks induced by 

man and the built environment in the global cycling 

of materials, or to corrobate/refute the hypothesis that 

nutrient supplements delivered from the city are of 

benefi t for the watershed’s ecosystem, and therefore its 

service providers?

Observing Th e Big Picture

Gauging sustainability of the built environment, 

with its rich heterogeneity of disciplines and scales of 

enquiry, does not fall neatly across the three axes of the 

“data cube” of Figure 1. A sense of this can be obtained 

by examining each axis in turn, using the perfect 

fertilizer scenario as an anchoring device.

Th e Challenges
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BOX 7

Sustainability, the Nitrogen Cycle, and Models

Consider the global N cycle (Galloway et al, 2003; Boyer et al, 2006) and place conceptually within it 
the metabolism of the city, connected to its surrounding watershed. To deal, on the one hand, with 
the deleterious consequences for the aquatic environment of employing water-based conveyance in 
removing from the city the metabolic residuals of its “daily bread”, great effort and cost are invested 
in accelerated biological nitrifi cation and denitrifi cation of sewage during wastewater treatment. On 
the downside of the city, therefore, N is deliberately shunted into the atmosphere — in order to avoid 
historic problems of water pollution — whence it must then, also with great effort and cost, be fi xed 
through the Haber-Bosch process for incorporation back into the production of artifi cial fertilizer, 
for application to the land, on the upside of the city. Roughly two-thirds of the N “removed” in this 
manner from urban wastewater during treatment, across the whole of Finland, is vented as gaseous 
emissions to the atmosphere (Sokka et al, 2004). This does not seem a sympathetic way of organizing 
the metabolism of the city and its compensatory wastewater infrastructure; of enabling the city to sit 
more comfortably within its surrounding environment and the web of global material cycles in which 
its metabolism participates (Beck, 2005a).

Challenge # 11 asks how, in the great sustainability debate, can studies of the metabolism of urban, built 
environments be better aligned with those of global biogeochemical material cycles and ecosystem 
restoration — and the restoration of natural capital and the ecosystem services derived therefrom. 
Taking the N cycle as exemplary, we review here three case studies at the watershed scale in how 
models might have been used to respond to this question, had it been asked of them. Our goal is to 
reveal the anatomy of each study according to: the features of the watershed; the nature of the models 
employed; and the policy actions related to matters of infrastructure, in particular. In conclusion, we 
shall revisit the metaphor of “sentient beings in their environments”.

River Kennet, Thames, UK

The Kennet is a sub-watershed of the Thames, upstream of London, in the UK (and the subject of 
earlier discussion of scenario analysis in Box 6; Wilby et al, 2006). Annual and seasonal temperature 
and precipitation scenarios for 1960-2100, downscaled from three GCMs, each themselves driven by 
the same pair of IPCC emission scenarios (as noted in Box 6), are provided as inputs to a watershed 
hydrological model coupled to a water quality model, in order to generate six trajectories of in-stream 
concentrations of ammonium-N and nitrate-N over this 140-year span of time.

In essence, the sub-watershed is treated as an agricultural ecosystem. Although occupied in places 
by urban communities, no options for changes of infrastructure are considered (for this was not the 
purpose of the assessment). The metabolisms of the conurbations are not even traceable through the 
customary, time-invariant point-source discharges from their associated wastewater treatment plants.
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BOX 7

Mississippi, USA

The Mississippi watershed needs no further geographical referencing (Mitsch et al, 2001). 
Observations of the areal extent of hypoxia (low levels of dissolved oxygen) in the Gulf of Mexico 
show an upward trend across the decade of the 1990s, a trend mirrored variously in: (i) the in-stream 
concentration of nitrate-N near the outlet of the watershed, from 1945 through the late 1990s; (ii) 
the estimated annual mass of N fertilizer applied to the watershed from 1955 to 1995; and (iii) the 
areal extent of (engineered) land drainage in the watershed from 1900 onwards. No model (M) is 
mentioned, for none was a part of the assessment.

As for the Kennet, the watershed can be viewed predominantly as an agricultural ecosystem. The 
single most important goal of watershed management is to promote denitrifi cation wherever possible, 
i.e., the venting of gaseous N species to the atmosphere. This is to be realized through the preferred 
options of riparian buffer strips and, more so, wetlands, for changing both the rural (primarily) and 
urban (much less so) wastewater infrastructures. Whereas we have sought in this White Paper to push 
ecology into the image of the highly engineered city (the metaphor of the “large animal grazing in 
its pasture”), so here installing wetlands and buffer strips to compensate for the ills of agricultural 
activities (in the Mississippi) is tantamount to the reverse concept: of pushing the engineering of 
infrastructures out from the city into the companion vision of the highly managed rural landscape 
(similar exchanges of perspective are evident in Box 8).

Seine, France

The city of Paris dominates the Seine watershed, whose estuary discharges into the English Channel, 
off the northern coast of France (Billen et al, 2007a). An integrated set of four models is central to the 
assessment (Even et al, 2007a). It comprises (i) the watershed upstream of Paris, (ii) the watershed 
downstream of Paris, (iii) the Seine estuary, and (iv) the Seine Bight, a coastal portion of the English 
Channel (Figure B7.1). It is gathered around a consistent, core representation of the biogeochemistry 
of N, P, and Si (Even et al, 2007a) and inspired by the nutrient spiraling concept of Newbold et al (1981) 
and Elwood et al (1983). It is also the most complete account of the non-atmospheric portions of 
fl uxes within the given global biogeochemical material cycles. Three annual hydrological sequences 
(wet, mean, dry) form the basis of a reconstruction of this biogeochemistry, for retrospective analyses 
of the entire watershed from a pristine era (pre-1000) through the 1500s and from 1850 through the 
present, and on to prospective behavior up to 2015, when the European Union Water Framework 
Directive will require waters in watersheds to have achieved a “good ecological status” (Billen et al, 
2007b). Through an exercise in model structure identifi cation typical of our Challenge # 7, water quality 
downstream of Paris cannot be made to match observations without accounting for the effects of 
combined sewer overfl ows from Paris in the lower watershed model (Even et al, 2007b).

An especially illuminating historical analysis of the N-metabolism of Paris over the period 1801-1914, 
and the best account to hand of the dynamics of gross urban metabolism, reveals the following: 
that of this daily bread, as we have called it, one quarter was required for powering transport (by 
horse); that the residuals of the metabolism were returned to the land as (solid or liquid) fertilizer to 
support the production of food for the city; and that the introduction of “British-style” water-based, 
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BOX 7

fl ushing toilets brought about the 
downfall of the previous fertilizer-
focused infrastructure, which 
included “urine separating toilets”, 
presumably of a non-fl ushed, dry 
variety (Barles, 2007). In the suite 
of four models, metabolism of the 
entire current population of greater 
Paris (10,000,000 people) and the 
water/wastewater infrastructure 
to which it is connected, is 
approximated as the resultant, 
time-invariant concentrations of 
the pollutants (nutrients, even 
resources) in the effl uent fl uxes 
discharged from a handful of 
wastewater treatment plants.

Viewing the watershed as an 
ecosystem, today’s spatial 
distribution of terrestrial 
autotrophic production and heterotrophic consumption shows the watershed as a surface with 
predominantly higher photosynthesis (P) than respiration (R), except for Paris, conspicuous through 
its P/R ratio descending to below 0.1 (Billen et al, 2007a). Future implementation of infrastructure 
options for metropolitan Paris, including inter alia wastewater treatment through biological 
nitrifi cation-denitrifi cation, is expected both to curb the occurrence of harmful algal blooms (HABs) 
and to return coastal marine primary production in the Seine Bight to a state of being P-controlled by 
2015, as previously during the watershed’s earlier biogeochemical history of the traditional cottage 
economy of the 1200s through the 1700s (Billen et al, 2007b).

Synthesis: State-of-the-art Models

Our fi rst conclusion is this. All three case studies are striking in their attainment of the “big picture”, 
conspicuously in respect of the time dimension, which is so distinctive of the idea of sustainability and 
its long view.

Second, and without exception, as far as we can tell, models of the watershed reduce description 
of the behavior of the entire city-water infrastructure couple to but a single vector of constants 
characterizing the point-source discharge to the river (as in Billen et al, 2007a). No feature of the city-
infrastructure couple merits an account as a variable with a differential equation of state. On the 
other hand, the scope of current models of the urban wastewater infrastructure (sewer network and 
wastewater treatment plant) barely penetrates into the watershed, extending but a short distance 
down the receiving stream from the point-source discharge (Schütze et al, 2002; Vanrolleghem 
et al, 2005). The two, models of watersheds and models of wastewater infrastructure, are thus the 

Geographical delineation of the suite of four models used in the case study of the Seine watershed in 
France and its accompanying coastal zone. Reprinted with permission from Even et al (2007a).

Figure B7.1
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BOX 7

unintended, perfect complements of each other. The latter also tend never to be coupled either to 
the potable water treatment and distribution network on the upside of cities or to the groundwater 
systems below them.

Technologies and Future Scenarios

While now not quite as novel as one might have thought, the single, simple technological device 
of the urine-separating toilet could short-circuit the onerous atmospheric diversion of N — in the 
big picture — as it cycles around the city’s metabolism, at least in principle. For it would have to be 
socially legitimate, literally at an intensely personal, local scale in the individual household. And in the 
longer-term, extrapolating over the generations towards a vision of a drier, if not dry, metropolitan 
sanitation infrastructure, some deft technological capabilities (of real-time process control; Achleitner 
et al, 2007) might well be needed to navigate through a risk-prone phase of newly re-plumbed 
households and offi ces coupled to the current city-wide sewer network (Beck, 2005a; Larsen and 
Gujer, 1996; Borsuk et al, 2008).

The challenge in prospect is this. Once households are fi tted with storage tanks for the separated 
urine, that material must be removed in a timely manner and transported to a place of treatment, for 
the eventual production of fertilizer. If the place of treatment is that of the customary end-of-pipe, 
centralized, municipal wastewater treatment plant; and if the “pipe” to be used for conveyance is a 
sewer network subject to precipitation-related fl ow variations with associated emergency overfl ows 
to the receiving water body; then the entire infrastructure — during this intermediate phase (say 5-20 
years into the future) — will become highly vulnerable to fast, transient events of inadvertent releases 
of ammonium-rich liquors to the surrounding aquatic environment (Beck, 2005a; Larsen and Gujer, 
1996; Lienert and Larsen, 2006).

Several stages for this scenario into the future can be imagined, all using the “business-as-usual” 
paradigm of cities of the Global North as both a point of departure and as a reference trajectory. 
These stages comprise: (i) installation of urine-separating toilets and storage cisterns in households 
and places of work, together with their associated re-plumbing and automation; (ii) operation of (i) 
for the purposes of producing a “designer sewage” fl ux leaving the existing combined sewer network 
and entering the centralized wastewater treatment plant, for improved performance there, albeit with 
N species regarded as pollutants of which to be rid (as in Achleitner et al, 2007); (iii) a possible re-
orientation of stage (ii) wherein the N species are recovered as resources through re-arrangements of 
side-stream processes at the plant; (iv) installation at the plant of a dedicated nutrient recovery sub-
system, with optimization of operating arrangements for (i) so as to maximize conveyance of urine-
concentrated sewage to the plant — the risk-prone, “adolescent” phase colloquially referred to as 
real-time control of the “yellow wave” (Larsen and Gujer, 1996); and (v) installation of a second pipe 
network within today’s combined sewer system for dedicated transfer of the urine concentrate from 
households to the dedicated nutrient recovery sub-system at the treatment plant.

To close, let us recall the metaphor of sentient beings in their environments, introduced in Chapter 
4.2 by way of motivating Challenge # 11. Suppose there were to be a city, such as Paris might become in 
the long view, deemed a sustainable “bull” in the sense of “shod with padded athletic trainers” and 

64106_NSF_WhitePaper.indb   9664106_NSF_WhitePaper.indb   96 7/22/2009   1:38:32 PM7/22/2009   1:38:32 PM



Chapter 4: Science and Engineering for Policy and Society  97

BOX 7

“in possession of the technological deftness” required to intervene as a force for good in respect of 
the Seine’s ecosystem services, i.e., fi t for “expanding the china shop’s operations” (Beck et al, 2009; 
also Box 8). Could or should such a city be developed deliberately in the watersheds of either the 
Kennet or the Mississippi, to compensate there for the loss of ecosystem services and the distortions 
of global material cycles as a consequence of their being (perceived as) essentially intensively 
managed, agricultural ecosystems (Hobbs et al, 2006) or rural-crops ecosystems (Kaye et al, 2006)? 
And to what extent is the platform of the suite of models (M) for the Seine-Paris system (Figure B7.1) 
appropriately oriented as a point of departure in responding to such a question?
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Th e Challenges

Space

If we are to understand something about distortions 

in the cycling of nutrients, it will be necessary to track 

the movement of foodstuff s into the city (as opposed 

to water infl uxes) and to track the fate of the nutrients 

thereaft er. If dry sanitation is to be the core principle 

in designing the urban nutrient-return infrastructure, 

the customary measurement of chemical species in 

water fl uxes will doubly not suffi  ce. Observing the city’s 

nutrient metabolism cannot readily be cast into the mold 

of conventional measurement strategies for the aquatic 

environment.

Any EO turned thus to observing the big picture, of 

sustainability of the built environment, is self-evidently 

going to have to cover a dramatic span of scales along 

this dimension of space, without dropping the many 

signifi cant scales at which the issue manifests itself, 

hence to focus solely on observing at either the global or 

the local scale. Box 1 reveals that span and the need to 

sample at many points along it: from the global trading 

of virtual water in the composition of the city’s incoming 

foodstuff s (Allan, 2003; SIWI-IWMI, 2004); and the 

accompanying global movement of nutrients from soils 

in producer-export countries to coastal environments 

downstream of cities in consumer-import countries 
(Grote et al, 2005); across the prospect of urban growth 

in coastal zones fueled by membrane and desalination 

technology, with then the potentially distorting 

consequences of yet further enhanced eutrophication 

for marine ecosystems (Jackson et al, 2001); through 

the built infrastructure of water storage and diversion 

schemes, and their undermining of our capacity for 

managing watersheds as ecosystems (Poff  et al, 2003; 

Arthington et al, 2006); and down to exercising control 

in real-time over the fl ushing of a myriad household 

toilets — at the local (and very personal) scale — in 

order to “re-design” the urban crude sewage fl ux for 

improved performance in a centralized wastewater 

treatment system (Achleitner et al, 2007).

Time

Th e Brundtland defi nition of sustainability, paraphrased 

as the following exhortation, is nothing if it is not about 

the long view:

“Doing well now by the biosphere and the stock 

of natural capital and fl ow of services therefrom 

implies doing at least as well generations 

hence.”

Adopting such a long view, however, is not to turn a 

blind eye to higher-frequency variations over hours, 

if not minutes and less. Measuring the “fast” cannot 

necessarily be sacrifi ced in favor of the “slow”, any 

more than local observations might be sacrifi ced in 

favor of global observations (or vice versa) along the 

spatial dimension.

Introduction of the technological device of a urine-

separating toilet — as part of a path towards fertilizer 

recovery — anticipates a years-long, if not decades-

long, risk-prone phase in its imagined life-cycle (in Box 

7). Having to control risky short-term behavior, over 

minutes and hours, may be a necessary precursor to 

achieving the eventual maturity of an infrastructure 

imagined currently as less unsustainable than 

today’s arrangements. In not yielding to the common 

temptation to sacrifi ce the high-frequency detail in 

favor of an exclusive low-frequency focus, there will 

be suffi  cient heterogeneity of signifi cant temporal 

variability to qualify the problem as fully subject to a 

tyranny of scales (NSF, 2006), every bit as much as in 

the spatial domain.

Indeed, we should be reminded of a well known saying: 

“for want of a nail a kingdom was lost” — as was the 

former symbiosis lost between nineteenth-century 

Paris and the Seine watershed with the introduction 

of the familiar WC (Barles, 2007; Box 7). Conversely, 

installing today the urine-separating toilet may become 

“the nail, given which a kingdom might be gained”, 

with all of the cross-scale ramifi cations thus implied.

Biogeochemistry

Expression of the data cube of Figure 1 obliged us 

to think there (in Chapter 2.1) of sampling, sensors, 

and instrumentation ranging from very small 

biogeochemical targets to the very large, and to 

conceive of the intensity of consistent sampling in 

space-time of the species/individuals within that 

(bounded) biogeochemical range. Presently, and 

arguably (in the context of the sustainability of the 

built environment), observation of the minutiae of 

chemical species may suffi  ce, together with — aft er 

some gap in sampling along the biogeochemical 

continuum — just the behavior of the human species 

moving about the built environment.

At the heart of the issue of re-engineering the city’s 

nutrient-return infrastructure reside (at least) two 

personal and intimate matters of human agency: 

dietary needs and preferences; and the willingness to 
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adopt one technology over another (as in re-plumbing 

the household for a urine-separating device, for 

example). A tyranny of scales may not reign here 

over sampling and observation in the biogeochemical 

dimension. But some other form of distorting power 

might (as we shall now argue).

People in the Picture; Agents in the Model

Th e Seine-Paris case study of Box 7 is indeed 

impressively complete in so many respects. Yet it is 

fl awed by one omission of profound importance to 

using models (M) in exploring ways of moving towards 

greater sustainability of the built environment.

Th e vast and intense social and economic activities 

of 10,000,000 agents — people, that is, behaving 

as consumers, citizens, enfranchised stakeholders, 

adopters of technologies (urine-separating toilets, 

notably), holding a plurality of cultural perspectives 

on sustainability, having a growing interest in man’s 

relationship with the environment, perhaps even 

contemplating Gibbons’ (1999) suggestion of Science 

being in need of a new contract with Society — are 

compressed into but a single, inanimate vector of time-

invariant boundary conditions of the watershed model. 

All this is compressed down to a point, as in a point-

source discharge of treated wastewater.

Th e following words may only have been spoken 

in jest, but they make their point too: “Wastewater 

treatment plants would work well enough, if only 

people would eat salads in winter and goulash 

in summer” (Watts, 1993). Th erein lies the 

unmistakable element of human agency in the urban 

landscape: choice over diet. Th at goes well beyond 

the concept of creating a “designer sewage” explored 

in Achleitner et al (2007), who take agency largely 

out of the hands of citizens, vesting it instead in an 

automated system of household storage-tank releases.

Why have we remained blind, almost wilfully so, to 

individual and collective human agency in the urban, 

built environment?

For we recognize — and must always (self-evidently) 

have known — that the river network is defi ned by 

the geographical and topographical features of the 

watershed, hence the movement of water above and 

below the land surface; that there are people, animals, 

plants, and vegetation on this surface; and that all the 

metabolism on, and attributes of, the surface cause 

materials (many considered, for a time, as pollutants) to 

be deposited on it and moved across it by precipitation-

induced fl uxes of water. Similarly, we can recognize 

that through the society and economy in which 

they participate, people cause degradation of water 

quality, not the inanimate “population equivalent” 

of engineering analysis, or the somehow “people-

divorced” wastewater treatment plant of the local, 

municipal government, which entity itself may oft en be 

accused of “dumping” sewage into the environment.

Th is sense of detachment of the person from the 

problem, which is marked in the urban environment, 

cannot obtain so readily in the rural environment. 

Th ere, individual farmers are unmistakably responsible 

for the distribution and manipulation of the behavior 

of plant and animal communities over the land surface 

(and thus the degradation, or improvement, of water 

quality).

People too participate much more than previously — in 

living memory — in their aquatic environment, partly 

because of the growing awareness of man’s impact 

on the environment and the successful restoration of 

improved surface water quality (devoid, on average, 

in some places, of signifi cant contamination from 

the social and economic metabolism of the city, as in 

prospect for the Seine by 2015). It is they, the people, 

and their domestic pets, who contract illnesses from 

contact with the water. It is they who are disadvantaged 

if the sport fi shery, restored through a more complete 

wastewater infrastructure and thus healthier ecosystem 

in the lake or river, is threatened in the short-term by a 

treatment plant failure or in the long-term by climate 

change, or whatever (Beck, 2005a).

Accounting formally in a model M for human agency 

in the built, urban environment is just as important 

as in the rural/agricultural environment, if not much 

more so. Huge quantities of water and nutrients may 

be pushed through the rural systems of agriculture and 

livestock production. Increasingly, however, personal 

preferences and market signals as to what should be 

produced in those systems, if not how this daily bread 

is produced, will emanate from urban communities 
(SIWI-IWMI, 2004). In that sense, the social and 

economic activities of cities are primary drivers of the 

movement of materials around the globe.

A kind of hegemony — if not tyranny — of intellectual 

eff ort devoted to the theoretical (and computational) 

frameworks of rural landscapes/actors seems to 

have been exercised over that given to their urban 

counterparts.

64106_NSF_WhitePaper.indb   9964106_NSF_WhitePaper.indb   99 7/22/2009   1:38:33 PM7/22/2009   1:38:33 PM



100  Grand Challenges of the Future for Environmental Modeling

Th e Challenges

In Box 6 (Chapter 4.1) we saw how Janssen and 

Carpenter (1999) had populated their simulated rural/

agricultural landscape and its simulated drainage to 

a simulated eutrophy-prone lake, with computational 

agents (as simulated farmers). Th e same landscape 

was likewise the focus of the individual-based models 

and cyber-infrastructure of Hawes and Reed (2006). 

Shift ing away from the pole of these “rural forest/

crops” ecosystems and along the continuum of 

ecosystems types of Kaye et al (2006),34 agent-based 

models are fi nding ever wider application in the 

contemporary discussion of sustainable management 

of water resources (Hare et al, 2006; Giupponi et 

al, 2006; see also Hare and Deadman, 2004). Th ese 

address principally matters of utilizing infrastructure 

for conveying water around the various landscapes to 

furnish the agents — be they trees, crops, livestock, 

or humans, even urban citizens (Tillman et al, 

2001) — with their daily water intake. Castelletti and 

Soncini-Sessa (2006, 2007) seem almost to celebrate 

the push towards greater participation of scientifi cally 

lay stakeholders, as if paradoxically to revitalize the 

application of formal, mathematical optimization in 

water resource systems analysis.

Further along the continuum, at the instance of a 

suburban “residential” ecosystem, a diff erent kind of 

socially sensitive modeling, “participatory modeling”, 

has attracted attention. Built within the STELLA™ 

soft ware framework (Brown Gaddis et al, 2007), its 

purpose is to assist stakeholders at the urban-rural 

interface in managing nitrogen migration through 

the Solomons Harbor watershed, Chesapeake Bay, 

Maryland. Excessive amounts of reactive N-species 

arise there from the diff use, nonpoint sources of 

household septic tanks and from residential agents 

applying artifi cial fertilizer to yards and gardens — in 

eff ect, bringing us back to the same problem context 

surrounding the farming agents of Janssen and 

Carpenter (1999).

34  In enquiring whether there is “A Distinct Urban 
Biogeochemistry?”, Kaye et al (2006) propose a continuum 
of ecosystem types: “urban core” and “rural-forest” bound 
its extremes, with “urban residential” and “rural-crops” 
as internal sampling points. Hobbs et al (2006) posit an 
alternative spectrum, or continuum. Th eirs ranges from the 
“wild” (or natural/semi-natural) across to the “intensively 
managed” (agricultural), with “novel ecosystems” arising 
somewhere between these two poles — as a result of invasion, 
degradation, or abandonment. Th e reader, however, is left  to 
presume that the “urban core” and “residential” ecosystems 
must lie off  their scale, beyond the “intensively managed”.

Moving on from the “residential”, hence to end up at 

the urban/built (“urban core”) pole of their continuum 

of ecosystems, Kaye et al (2006) have composed 

a diagram redolent of the icon-based interface of 

the STELLA™ soft ware platform (Isee Systems Inc, 

Lebanon, New Hampshire), with controls on cause-

eff ect relationships denoted by stick-fi gure humans. 

Th ey make no further progress, however, beyond this 

conceptual recognition of human agency, towards 

formal model computations. Instead, they proceed to 

recommend three areas for future urban biogeochemical 

research, two of which concern:

[H]ybrid engineering-ecology models ... linked 

to the energy and material demands generated 

by human demographic trends and household 

actions ...

[M]odels that link demographics, diets and 

waste.

while the third (consideration of household-scale 

actions) concludes (Kaye et al, 2006):

[W]e are unlikely to generate accurate 

predictive models of urban biogeochemistry 

without incorporating the actions that people 

take in managing their landscapes and 

households, and we are unlikely to be able to 

predict those actions without understanding 

their variation as a result of culture, attitudes, 

and socioeconomic setting.

Th ey give us thus a foretaste of how — under the 

Environmental Observatories — we might respond to 

the challenges in pursuing the long view of sustainability 

of the built environment, whence Challenge # 11 derives.

Technological Diversity and Ecological Resilience

To summarize, we have models for all manner of human 

agency in respect of harvesting from the landscape the 

intakes of daily bread and daily water fueling the city’s 

metabolism, but yet not in respect of what is required 

to assimilate the residuals of this metabolism back into 

the city’s environment. And it is human agency in this 

latter, as in choices over the adoption of one household 

technology over another, that will be key in moving 

towards greater sustainability of the built environment.

Does this lacuna arise because there is something rightly 

too intimate and personal about the choices we make 

over “diets and waste”, as Kaye et al (2006) call them? 
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Perhaps not, for contrary to the widespread sense of our 

coming to a kind of historical closure in environmental 

engineering, typical of which is this from Brown Gaddis 

et al (2007),

Remaining point sources of pollution are 

related to monetary and regulatory problems 

rather than technology shortfalls.

we stand instead on the threshold of potentially 

radically diff erent ways of conceiving of the 

technologies of metropolitan water infrastructure, 

spurred on precisely by the sustainability debate. 

Th e customary “water-centric” view of the built 

environment of the city, wherein pollutants are to be 

removed from water in the wastewater infrastructure, 

has a complement: a nutrient-focused perspective, 

under which water is instead to be removed from the 

resources of nutrients (and other energy-carriers). 

Some of the principles for such re-thinking of the city’s 

built environment are adumbrated in McDonough and 

Braungart (2002).

To conceive then of things in the round — to be 

confronted with computational assessment of a single, 

constituent, technical innovation (a novel membrane 

technology for chemical-species separation, for 

example) in respect of its long-term, inter-generational 

sustainability, within an entire infrastructure of 

a city, whose metabolism should be gauged for its 

impact on the web of literally global material cycles in 

which it is suspended — is an engineering challenge 

in its own right. It is one entirely consistent with the 

recommendations from the NSF’s (2006) blue-ribbon 

committee on Simulation-Based Engineering Science 
(SBES). When such an enormous intellectual gap must 

be spanned — between the urgent pragmatism of 

today’s municipal engineering (of the unattractive but 

essential services we would rather take for granted) and 

the radically diff erent, imagined alternatives several 

generations hence in the future — grounding the 

debate in the quantitative analyses of environmental 

models (M), including the computational virtual 

realities of SBES, will be indispensable.

For how else might we puzzle out the system-wide 

implications of constituent, technological innovation T
i
 

within the host of other technological components of 

which entire infrastructures are comprised, i.e., i = 1, 2, 

..., m, where m is large? How critical is the presence of 

some other technology (T
j
) in the infrastructure for T

i
 

to be a success? How else should we make even vaguely 

convincing the distant visions of the target “end-

points” (E
k
) of infrastructure re-engineering, with k = 

1, 2, ..., n, and allowing these as necessary to be several, 

not singular, in line with the plurality of a community’s 

aspirations for the future? Which immediate 

candidate innovations (T
i
) might be key — under 

gross uncertainty — in enabling paths of transition 

away from today’s status quo towards any, if not all, of 

the socially legitimate, inter-generational aspirations 

E
k
? Th rough what framework of adaptive community 

(social) learning might quantitative assessment (M) of 

the choices over T
i
 bestow {social legitimacy} on the 

paths of transition? Or how should we gauge progress 

away from unsustainability without the simulated 

means to approximate the behavior of the pre-existing 

natural capital, ecosystem services, and biogeochemical 

fl uxes of the watershed prior to arrival of the city (in 

geological time)?35

When Challenge # 4 was composed, on universal 

science issues of a biological nature, our discussion 

traversed an arc scaling up from the smallest of cellular 

details to an earth systems perspective and then back 

down to behavior within the cell (in Chapter 2.4). 

Facets of the same great expanse of heterogeneous 

scales of consideration have already re-surfaced 

in our brief examination of how the EOs might be 

turned towards observing the big picture, with people 

emphatically included therein. Now, in furthering 

responses to Challenge # 11, with its call for a “better 

strategic alignment of urban metabolism with that 

of ecosystem services”, the questions just posed — 

in respect of developing models for imagining and 

assessing the technological composition of the built 

environment — likewise fall unavoidably and untidily 

across a variety of scales of analysis, as related in Box 8.

Th e beginnings of possible answers to some of these 

questions raise other questions, not surprisingly, about 

the lines of responses to other facets of Challenge # 11. 

In Box 8 we enquire in passing whether there might 

not be a “material-minimal” sequence of technological 

innovations, for example, implying that this would be 

more environmentally benign. Challenge # 11 itself 

deliberately begged the rhetorical question: should it 

not be the case that Information and Communications 

Technologies (ICT), the essence of an environmental 

cyber-infrastructure, are more environmentally benign 

than other forms of technological innovations?

Motivated by Challenge # 9 (of science and engineering 

in “real time”) at least two schools of thought on the 

options are possible. Consider a scale of infrastructure 

35  All questions motivating the computational analyses 
in Beck et al (2009).
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BOX 8

Scale-dependent Technology Assessment, Models, and Sustainability

Challenge # 11 asks “what kinds of models should be developed in order to promote a better strategic 
alignment of the study of urban metabolism with that of ecosystem services, all within the web of 
global biogeochemical cycles”?

Technically lay citizens make decisions about what technological apparatus deserves space in their 
households; municipalities and utilities must assess which technological innovations offer benefi ts 
on a system-wide basis, shunning the temptation to optimize the part, while pessimizing the whole; 
watershed authorities might eventually wish to evaluate innovation Ti as a net contributor to enhancing 
ecosystem services; while some other actor in a future institutional pattern of global governance could 
require assessment of Ti for its restitution of the pre-industrial global cycling of nitrogen.

In this Box, we examine what kinds of models and computational analyses could support responses to 
Challenge # 11 along these lines. They must clearly recognize the predominant feature of scale, as well 
as the signifi cance of cross-scale interactions. No amount of household re-plumbing could deliver 
benefi ts at the watershed scale without commensurate actions by municipalities, as we shall see.

Household

Within the long view of sustainability, there are those who argue that the General Agreement on 
Trade and Services (GATS) can only but add to the increasing role of private-sector actors in the 
provision of water infrastructure (Mondello, 2006). Others assert that good governance must fl ow 
from the involvement and essential leadership of public-sector actors (Hooper, 2006), while yet 
others note the signifi cance of civil-society (non-governmental) actors, especially in respect of rural 
irrigation infrastructure (Mostert, 2006).1 The three sets of actors have differing attitudes towards risk, 
fundamentally different outlooks on the Man-Environment relationship, and just as different a set 
of views on the economies (and dis-economies) of various scales of industrial production — hence 
different preferences on the nature of technological innovations each would adopt (Schwarz and 
Thompson, 1990; Thompson, 2004). Different public debates amongst the three typologies (Kwame, 
2007), determining different outcomes of infrastructure development, will be engaged at the level of 
the household, the neighborhood, city district, the city, the watershed, and across and amongst these 
various levels. Society’s aspirations Ej are scale-dependent, we should therefore suppose (IWA, 2007).

What Janssen and Carpenter (1999) achieved in applying agent-based models for studying the 
evolution of ecological resilience over the (very) long-term in coupled farmer-rural landscapes would 
be one point of departure into the present domain of examining, say, socially robust paths, patterns, 
and possibilities of metropolitan water infrastructure. There might even be elements of fashion (a 
“herd instinct”) in the adoption of household technologies and appliances; and the model might be 
charged with exploring when mass change should/should not be induced or promoted, how exactly, 
and whether this is ethical.

1  Th ere is historical evidence, nonetheless, of such cultures and traditions of rural water governance being introduced into 
the urban setting through the rural-to-urban migration of people and communities (Barraqué et al, 2006).
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Local (city)

Assuming such sweeping, collective choices were to occur at the level of many households, enabling 

thus strategic, macroscopic innovation (Ti), of “separation at source” of the residual fl uxes of the 

city’s metabolism, we know that the conventional unit-process models of infrastructure simulation 

(Vanrolleghem et al, 2005) can be used to assess the system-wide implications of that innovation. So 

too can the caricature of the  mathematical program in the introduction to this last technical Challenge 

(for instance, Tsai et al, 2004). Assessment could be referenced to the pejorative “end-of-the-pipe”, or 

to locations within the watershed, but would require new criteria of assessment, even for the relatively 

straightforward bottom line of {environmental benignity}, as foreshadowed in Beck (2005a). Measuring 

progress towards the pristine spectrum of temporal disturbances of the watershed, which gave rise to the 

ecological assemblies, their dynamic resilience, and their portfolio of ecosystem services as found prior 

to the arrival of the city, would be subject to the now famous tyranny of scales recalled, yet again, above. 

Less immediately obvious is how any model might be constructed and applied in order to chart future 

paths of transition intended to serve the current paradigm of treating nutrients in wastewater as pollutants 

of which simply to be rid, if it turns out to be a conceptual cul-de-sac. How today should we plan to adapt 

contemporary engineering and technological upgrades, if they can already be discerned as potential 

“retrogrades” under an alternative, complementary paradigm where these nutrient fl uxes are regarded 

as resources to be recovered? Is there a cost- and material-minimal sequence of initial adaptations that 

maximizes fl exibility in subsequent adaptations driven by such a possible sea-change in outlook?

Regional (watershed)

Conservation and restoration ecologists, in concert with ecological economists, have elevated our thinking 

on sustainability to the heights of the grand economic and ecological notions of natural capital and 

ecosystem services (Aronson et al, 2006; Farley and Daly, 2006; Kremen, 2005). What form of model, under 

what EO operating protocol, could be tasked with computing how much natural capital and ecosystem 

services could be restored in the watershed (and beyond) by incorporating constituent technology Ti into 

the city’s water infrastructure?

More specifi cally, how exactly might the classical technology of the activated sludge process of wastewater 

treatment be re-engineered (innovation Ti) so as to serve better this much broader objective? The question 

ranks as but the “smallness” of a footnote to Kremen’s (2005) tabulation of the “largeness” of global 

ecosystem services classifi ed according to the Millennium Ecosystem Assessment (Carpenter and Folke, 

2006). And in that sense “thinking globally, acting locally” is epitomized — and the sweeping traversal 

across scales from Challenge # 4 echoed, in its call for research on universal science issues of a biological 

nature (Chapter 2.4). Few ecosystems can be readily experimented with in the interests of advancing 

the science of Ecology. The microbial ecosystem of the activated sludge process is a salient exception, 

precisely because of its engineered form. Cited for this purpose by Kremen (2005), Graham and Smith 

(2004) promote the idea of “designed ecosystem services”. Moreover, they look to the development and 

application of models (M) as the means to articulate and realize this idea (Saikaly and Oerther, 2004), 

rekindling the youthful exuberance, as it were, of systems ecology in the 1960s and 1970s, which had briefl y 

penetrated environmental engineering (Curds, 1973a,b).
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Just as the trading of permits between urban and rural actors is facilitated at the watershed scale, 
in the interests of reducing pollution of the aquatic environment through the discharge of nutrient 
fl uxes as wastes, so too can the intermingling of technological innovations in the water, agricultural, 
and energy sectors be facilitated — at the watershed scale. Diffuse, nutrient-rich runoff from the 
spreading on pasture land of litter from intensive poultry production can be substituted by the 
recovery of a biofuel and a fertilizer. What kind of model and EO functions would be needed to 
further this kind of possibility and to assess its implications for the restoration of ecosystem services?

Global

Without courting the intellectual paralysis of the systems analyst,2 we know that developments in 
all economic sectors are inter-related, in particular, in the water, energy, and agriculture sectors. We 
know too that in the late 20th Century industrial, anthropogenic N fi xation from the atmosphere 
overtook natural terrestrial N fi xation (Galloway and Cowling, 2002; Galloway et al, 2004); that Man’s 
predominant appropriation of nutrients and water is in producing foodstuffs (and fi ber) in the rural-
agricultural domain; and that only 14% and 4% of the N applied to the land as fertilizer reaches 
our mouths in our daily bread, as a function of whether or not, respectively, we are vegetarian; but 
that soon the majority of the world’s population will be urban dwellers; that it is in the cities where 
dietary choices may have the greatest scope for change; that the making of these choices will send 
increasingly clear signals to farmers in the rural surrounds and hinterlands of cities, as to what kinds 
of food the market desires to be produced (SIWI-IWMI, 2004); and that — beyond human choice over 
diet — historic changes in the technologies of urban water infrastructure, in particular, in respect of 
handling the biological residuals of the city’s metabolism of its daily bread, can have an important 
impact on the paths by which nutrients and other materials cycle around the globe (Barles, 2007; 
Sokka et al, 2004; see also Box 7).

Skirting around the issue of whether personal diets can and should be adapted in the interests of 
lessening the unsustainability of the built environment, we put this question: what kind of model 
could be constructed for assessing which technological innovations (Ti), and which paths towards 
alternative future metropolitan water infrastructures, might lower the global nutrient (and water) 
metabolism, i.e., uncouple human and economic development from industrial N fi xation, and all 
under the prospect of global climate change? Such questions are studied formally with models in 
the energy sector, in respect of strategies for mitigating climate change (Lempert, 2002). Why should 
this not be the case in the sectors central to this White Paper? Why also, to mirror the interchange 
of rural (ecological) and urban (engineering, infrastructure) perspectives noted in Box 7, should not 
agricultural-, chemical-, and energy-sector businesses begin to look more favorably and aggressively 
on resource recovery from the urban wastewater infrastructure (and its hitherto predominantly water-
centric commerce)?

2  Who recognizes that all things are related to each other, but analysis of their interactions is intractable, since every thing 
seems equally essential to everything else, leaving thus undecided what should be left  out in composing the model (M).
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reconstruction varying between 0% and 100%. To 

exaggerate, let it now be bounded at the two extremes 

by: (i) a 0% strategy, in which not one brick of the 

urban water infrastructure is therefore removed, except 

for inserting the small boxes housing instrumentation 

and real-time control devices — the essence of 

“intelligence” and “deft ness of movement” enabling the 

city to act as a force for good in the environment; and 

(ii) a 100% strategy, in which everything is demolished 

— including the vast hull of the sunk historical 

investment in plumbing, pipe networks, channels, 

tanks, and so forth — as the prelude to building 

completely anew.

Elaborated thus, there might well be a prima facie 

case for asserting that the “hard path” of a 100% 

reconstruction strategy (changing the structure) should 

suff er from a large ecological/carbon footprint arising 

from the movement, if not the recycling, of so much 

material. In contrast, the “soft  path” of the 0% strategy 

— the ICT path, of changing the function of the 

infrastructure — ought not to be so disadvantaged.36 

It might not, in other words, constitute a strategy of 

dematerialization, but it might avoid the prospect of 

serious further “materialization”.

It could even be argued that in its “pure” form the 

“0% school of thought” should seek — in the spirit of 

Challenges # 4 and # 5 — to suff use the entire system 

of infrastructure with ecological resilience by applying 

control “externally”, without indeed moving barely a 

brick. Th is, however, could arguably make the system 

increasingly prone to cascading failures arising from a 

growing reliance on precisely the kind of ICT required 

for eff ecting communication and operations from 

“without” (Zimmerman, 2001; Rinaldi et al, 2001; 

Little, 2002). Such vulnerability would be heightened in 

the face of high-frequency (fast-acting), high-amplitude 

threats. Th e soft  path of the pure strategy could thus 

yet run the risk of coming to epitomize (again) the 

brittleness of Holling’s engineering resilience (Holling, 

1996).

Th ere could, then, be signifi cant merit in the 

alternative: of something approaching the caricature 

of the 100% school of thought, whereby ecological 

resilience is progressively designed into the structure 

36  Such a “soft  path” towards distant community aspira-
tions might not only be very diff erent from that envisaged by 
Gleick (2003) in his original coining of this phrase. It might 
also even retain the hull of the city’s sunk investment of past 
decades and centuries in its unreconstructed (and currently 
much denigrated; Niemcynowicz, 1993) centralized forms of 
sewerage and wastewater treatment.

of the system, as opposed to somehow being enacted 

through real-time operations from “without”. We take 

one last glance, therefore, at our biological metaphor 

of the city as a sentient organism, therefore, in order 

to add one further extension to the construction 

of Challenge # 9, built upon the inter-disciplinary 

thinking of Challenge # 5, under which Holling’s 

notion of ecological resilience was fi rst introduced.

We know from the preamble to those earlier 

Challenges that ecological resilience in behavior over 

time is a function of the inter-play amongst relatively 

slowly changing (low-frequency) and relatively swift ly 

changing (high-frequency) components of behavior, 

i.e., cross-spectrum interactions (Carpenter and Folke, 

2006). We are aware from the present Challenge # 11 

(including Box 7) that an EO turned towards observing 

the big picture of sustainability should not abandon 

observation of the fast for observation of the slow 

alone, or vice versa. We are likewise aware from Box 

8 of the multiple spatial scales over which candidate 

technological innovations within the built environment 

(T
i
) are active and infl uential. We know too from the 

introduction of Challenge # 5 that ecological resilience 

has companion interpretations in respect of cross-scale 

interactions. To recapitulate (Peterson et al, 1998):

[E]cological resilience is generated by diverse, 

but overlapping, function within a scale 

and by apparently redundant species that 

operate at diff erent scales, thereby reinforcing 

function across scales.

Th e combination of a diversity of ecological 

function at specifi c scales and the replication 

of function across a diversity of scales 

produces resilient ecological function.

What principles for re-designing the dynamic 

performance of a city’s water infrastructure could we 

derive from these, through merely substituting the word 

“species” by “unit process technology” T
i
 (and eliding 

thus, one last time, the disciplinary and conceptual 

distinctions amongst Engineering, Ecology, and Cellular 

Biology)?

In the absence of some study or assessment with a 

model (M), all this will readily be recognized for 

what in fact it is: yet more provocative, speculative 

questioning. Engaging in constructive disputation 

amongst the diff ering, archetypal schools of thought on 

infrastructure re-engineering will not progress far or 

fruitfully without, for instance, charging both with the 
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task of coming up with strictly comparable accounts 

of the sustainability or otherwise of their respective 

paths — of soft  (→0% reconstruction) versus hard 

(→100% reconstruction). Th ose alternative paths must 

proceed from the initial conditions of today’s hull of 

conventional centralized wastewater infrastructure and 

arrive at, say, the target end-point of the perfect fertilizer 

aspiration (E
k
), generations hence. Th e purpose of 

Challenge # 11 is to invite considerations of what kinds 

of M, novel or otherwise, will be needed to buttress — to 

corroborate or refute — such grand conjectures.

Empirical studies of ICT innovations, in general, beyond 

the water sector of the built environment, indicate rather 

a “rebounding” eff ect of re-materialization (Berkhout 

and Hertin, 2004; but see also Kander, 2005). Even 

in our narrower context of the EOs, in respect of the 

impact of ICT, Challenge # 11 remains just that: an open 

question as to what exactly should be the role of models 

(M) in exploring the role of the future environmental 

cyber-infrastructure in the de-materialization of Society.

Separating Formal Model Computations from Public 

Debate and Democracy

Looking back to the 19th Century, medics, clerics, 

lawyers, and like members of the scientifi cally lay public 

off ered their opinions on what should be done about 

urban sewage and sewerage; and they were heeded by 

the engineers of the day. By the second half of the 20th 

Century, in the then modern age of the technocracy, it 

became progressively easier to presume that scientifi c 

and engineering professionals would “know best” 

about the interaction between the built and the natural 

environment and, therefore, how to manage its growing 

technical sophistication. Less and less attention was paid 

to the perceptions and insights of lay members of the 

public.

With the arrival of the internet, all this has changed. 

Technocracy and a hegemony of expert knowledge in 

the aff airs of environmental management are yielding 

to a form of participatory democracy (Darier et al, 

1999). Th e lay public increasingly has an independent 

“voice”, and the wherewithal to give expression to that 

voice with a rising volume to an ever larger audience, 

through websites and blogs, for instance. Scientists 

and engineers are no longer perceived as utterly in 

command of “value-neutrality”, clinically distanced 

somehow from the problem to be dissected on the 

surgeon’s operating table, but instead a part of the 

problem (witness Hare et al, 2006). Some have argued 

that the engineering professional’s struggle to maintain 

value-neutrality is even an impediment to progress 

when it comes to shift ing away from unsustainability of 

the built environment (Davis, 2008).

On the threshold of the millennium, Gibbons 

(1999) used the platform of a special supplement to 

Nature to argue that Science was in need of a new 

contract with Society; that for two centuries Science 

had spoken unto Society; but that now Society was 

increasingly likely to speak back to Science, as it were. 

In keeping with this contemporary mood, the 2006/7 

Grand Challenges Committee of the US National 

Academy of Engineering insisted on its essays being 

understandable, in principle, by all. Whatever were to 

emerge as the grand challenges for engineering in the 

present century, they should have been fully debated 

by the public at large — through a dedicated Academy 

website (www.engineeringchallenges.org).

In introducing our last technical Challenge, we began 

by drawing a caricature of a mathematical program, 

of how to determine “optimal” courses of action 

enabling Society to move along a path towards greater 

sustainability of the built environment. Th e expectation 

was of discomfort amongst our community over the 

computational treatment of personal preferences when 

refl ected in our models (M).

Th ere will indeed be those kinds of environmental 

problems that are amenable to being addressed 

and resolved using quantitative methods from the 

traditional engineering toolkit, in which case the fi ne 

line separating this form of technical analysis from 

public debate and democracy might well be able to 

penetrate deep into the property of {social legitimacy}. 

In others, it will be decidedly inappropriate, with 

that line barely able to penetrate the property of 

{environmental benignity}. Th is tension, in where to 

draw the “fi ne line”, is encapsulated in Fenner (2008), 

who juxtaposes the sharply opposed and succinct 

desiderata of two pre-eminent Physicists (Lord Kelvin 

and Einstein) on the matters of measurement and 

quantifi cation. Th ere may even be no common ground 

for formal agreement amongst the various groupings of 

stakeholders on the science underpinning projections 

of what constitutes “doing well” by the biosphere, 

let alone on the form of democracy, debate, and 

governance through which the “doing well” can be 

witnessed by most, if not “all”, as about to be done.

Models and their forecasts are of interest to the public: 

through works of fi ction (Crichton, 2004); through 

programs on future threats to our environment 

aired on the National Geographic and like television 
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channels; and through well informed accounts of 

Science prepared for a general, scientifi cally lay 

readership (Mooney, 2007). In this instance (Mooney, 

2007), as we have already observed, such accounts turn 

out to be shaped by questions we too have identifi ed as 

core issues for this White Paper — Challenges # 9 (on 

philosophy) and # 7 (on system identifi cation) — yet 

seemingly so subtle as to be generally regarded as at 

the edge of the mainstream, even for scientists and 

engineers.

Models — expressly — matter now at the Science-

Society interface. Th e wheel, in this sense, never quite 

turns full circle. Th e means of supporting a two-way 

dialog between Science and Society are vastly diff erent 

today than a century or so ago. Th e means to envision 

longer-term futures, and the possible paths towards 

them, including through the invention, diff usion, 

and adoption of novel technologies, would 100 years 

ago have seemed inconceivable. Th e technologies of 

scientifi c visualization and virtual reality (amongst 

the destinies of environmental modeling) must 

themselves have seemed unimaginable. Whereas once 

it was the artist’s sketch that was used to convey an 

impression of our futures — and still must be used for 

succinctness on the printed page (as in Carpenter and 

Folke, 2006) — it will increasingly be the computer-

animated fi lm, the virtual simulator chamber (Hall 

and O’Connell, 2007), or encounters within the context 

of Second Life (WATERS, 2008). Achieving {social 

legitimacy} has risen to the status of primus inter pares 

amongst the three bottom lines in the global search for 

technical solutions contributing to progress away from 

unsustainability.

We are already suffi  ciently equipped to simulate the 

interaction over the decades between (simulated) man 

and (simulated) environment. In that virtual reality, 

“man” can be an agent primed with the rules of one 

perspective on the Man-Environment relationship, 

from amongst a plurality of such culturally conditioned 

outlooks, and be primed too with the capacity to learn 

and adapt “his” behavior as “he” moves through time 

in an environment populated by other agents (Janssen 

and Carpenter, 1999). Movement of the simulated agent 

through the simulated environment over a span of time, 

and the insults and injuries “he” suff ers from exposure 

to harmful substances in that environment, can also be 

tracked in a complex suite of soft ware for risk assessment 

(TRIM.Fate; www.epa.gov./ttn/fera/trim_fate; see also 

Efroymson and Murphy, 2001). Th ere is talk of building 

“electronic crash test dummies” (Clarke, 2004). It is not 

hard to imagine the “span of time” eliding into the entire 

life of the simulated agent, with simulated preferences 

over modes of transport and other matters of life-

style, presumably too “his” diet therefore, with all such 

preferences being conditioned and negotiated within 

the community of other simulated agents, through 

the computational game theory we already know 

(Dieckmann and Metz, 2005; Levin, 2006; or Ohtsuki 

and Iwasa, 2006).

As a real stakeholder observing your simulated, 

virtual self as participant in a proposed strategy for 

moving away from some unsustainable pattern of 

behavior — for example, in restoring a suburban 

watershed degraded by excessive use of garden 

fertilizer — what would you conclude and learn from 

such an exercise? Would the simulation add to, or 

detract from, the social legitimacy accorded to the 

strategy? And taking the long view, as your personal 

(private) simulated self becomes ever more life-like, 

what are the ethics of exploring options for collective, 

public policy in this manner? How comfortable 

should any of us feel about this?
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4.3 Community Structure

Any self-respecting exercise in assembling grand 

challenges from any given community of scientists, 

engineers, and scholars, will face the fi nal challenge 

regarding that community’s self-determination and 

self-education in responding to the scientifi c and 

technical challenges it has expressed. Our White Paper 

will be no exception. Indeed, in many ways what is 

being recommended in the following (in Chapter 5) 

reiterates what has already been recommended in 

the National Research Council’s earlier set of “Grand 

Challenges in Environmental Sciences” (NRC, 2001). We 

make no apologies for being repetitious in this respect. 

For some of the challenges we face — in changing 

ourselves — are recalcitrant, universal, and the very 

grandest of all.

Looking thus inwards, towards our own community, 

we off er this cartoon of the (May, 2006) Tucson 

workshop:

Speaker A, from discipline X, presents 

his view of future challenges in his native 

discipline, and with some enthusiasm and 

conviction. Participant B, from discipline 

Y, quips that he has just heard a very nice 

presentation, but then he wonders — aloud 

— where speaker A has been for the past 30 

years.

Th is exchange happened, specifi cally in respect of data 

assimilation (herein Challenge # 9 now). Its expression 

in the form of a cartoon preserves anonymity, not least 

because the very same wonderment (at one’s scientifi c 

whereabouts these past three decades), could have been 

leveled at Participant B himself, by Participant C from 

Discipline Z.

Challenge # 12:

What steps can the community of model-

builders in the Environmental Sciences take 

to pre-empt and reduce to a minimum the 

still readily apparent scope for re-inventing 

the “wheels” of modeling in contemporary 

research across the various disciplines of 

the EOs? How can our community best 

be organized so as to benefi t as much 

as possible from novel developments in 

modeling in general, as they arise in, for 

example, the quite disparate disciplines 

of the biomedical sciences, social sciences, 

cognitive sciences, artifi cial intelligence, 

and artifi cial life? More broadly, how should 

the community of modelers best work with 

the community of primary fi eld scientists to 

promote the development of models for basic 

scientifi c discovery at the interfaces amongst 

multiple disciplines? In the light of universal 

and ever-more urgent calls for profound 

changes in the manner in which the next 

generation of scientists and engineers is 

educated, trained, and formed — all of 

which calls focus on “inter-disciplinarity” 

— what special role can models serve in 

meeting these needs?

Looking across the grand Challenges expressed above, 

none calls as much for investments in equipment, 

computing, specialized fi eld campaigns, and so 

on, as it does for investments in changing habits of 

mind. Th ese are mind sets, in particular, of a kind 

of “tunnel vision”, with its part unconscious, part 

seemingly wilful “blind spots”, fully capable of giving 

birth to the foregoing cartoon from the Tucson 

Workshop. Inasmuch as not all of us have the talents 

for becoming an astronaut or brain surgeon, not 

everyone is suited to engaging fully and eff ectively in 

inter-disciplinary work, including when the object of 

enquiry is the development and application of models.

Turning now to peer outwards from the enclaves of 

modeling, those of us who consider we are modelers 

fi rst and foremost should readily admit to our 

ignorance: we should hesitate to venture opinions 

on how others ought to conduct their aff airs in 

enquiring into the nature of the biogeochemistry of 

aluminum speciation in forest soils or the existence 

and role of the microbial loop in the foodweb of 

an impoundment. Just about everyone, however, 

whether modeler or not, appears to have an opinion 

on how modelers should conduct their aff airs, and 

quite strong ones at that: witness the recent book 

of Pilkey and Pilkey-Jarvis (2007) and the earlier 

observations on how modelers, as a professional 

solidarity, are not always held in high social esteem 

amongst the broader community of scientists. While 

we believe that computational model-building should 

be viewed as a free-standing discipline in its own 

right, our purpose herein is not perversely to promote 

ignorance in others, by being deliberately obscure, 

opaque, or obfuscating in communications across 

from the domain of “modeling expertise” outwards to 

all others (just as Schaff er (1993) has recorded of the 

soothsayers of old). It is to nurture humility.
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Aft er the NRC Committee (NRC, 

2001) had expressed its Grand 

Challenges for Environmental 

Sciences it went on to make 

recommendations for immediate investments in 

research and then to discuss issues of implementation, 

including “building capacity for interdisciplinary, 

problem-oriented research”, itself the subject of 

another, more recent NRC report on Facilitating 

Interdisciplinary Research (NRC, 2004). We too shall 

be much concerned with this issue, as we now go about 

indicating some ways forward in response to our own 

grand challenges, with special reference to models as 

the lingua franca for communication across many — 

but not all — of the disciplinary domains upon which 

those challenges touch.

5.1 Models, the Lingua Franca, and Becoming 
Inter-disciplinary

Consider again, as in the introduction to this White 

Paper, the image of a model as the vessel into the 

holds of which the contributions from all of the 

relevant disciplines must be poured in a consistent 

and compatible manner. Th e systematic character of 

model-building, together with the discipline imposed 

by the formal algorithmic and mathematical logic 

of the models themselves, can at the least assist in 

eliminating daft  ideas — constituent hypotheses from 

diff erent disciplines that do not mesh logically together 

— sooner rather than later. From the demands of such 

consistency derives the metaphor of models aff ording 

us a lingua franca. And in this, it is the process (of 

model building) that may be as important as the 

product (the model), if not more so.

Assembling our White Paper has itself been an exercise 

in becoming inter-disciplinary, even a refl exive self-

study. It began by introducing the simple, abstract 

triplet {u, M, y}, of the observed inputs (u), model (M), 

and observed outputs (y), and then setting out the 

attaching tasks of modeling as those of the archetypal 

mathematical textbook: given two out of these three 

unknowns, fi nd the third. Essentially everything 

from there onwards can be tied back to the reference 

framework of this piece of elementary abstraction.

Chapter 5: Ways Forward

Horizontal Integration: Across and Beyond the 

Disciplines of the Environmental Observatories

Armed with the common language of modeling, 

we are better equipped to achieve “internal”, 

horizontal integration across the disciplines of the 

Environmental Observatories. Th us, for example, in 

setting up Challenge # 8, we were able to shed light 

on how Environmental Engineering has been largely 

conspicuous by its absence from the study of data 

assimilation, as commonly found in Hydrology and the 

Ocean Sciences, albeit less so in Ecology. Something 

of the reverse then followed. Given the triplet of {u, 

M, y}, and the notational conventions fl owing from it, 

a research agenda in response to Challenge # 8 could 

be transcribed (in Box 5) from the specifi c domain 

of the just the Ocean Sciences — the Littoral Ocean 

Observing System (LOOPS/Poseidon; Lermusiaux et al, 

2006a) — into a more generic framework, embracing 

all four disciplines (Environmental Engineering, 

Hydrology, and Ecology, in addition to the Ocean 

Sciences).

We suggest our lingua franca should likewise enable 

extrapolation to the achievement of a signifi cant 

measure of “external”, horizontal integration, not to 

mention signifi cant innovation, outside the span of 

all four of these disciplines: via the development of 

models, into the biomedical sciences, on the one hand, 

and the social sciences, on the other. Ideally, we should 

be able to move with ease through and across the 

diff erent disciplines. Th is was the culmination of our 

preliminary response to Challenge # 5.

We evoked there (under Challenge # 5) the image of 

simulating the sentient individual organism within its 

ecosystem, i.e., its environment containing individuals 

from its own and other species, as the means to mark 

out where some of the frontiers of research now stand 

in respect of generating novel insights into the generic, 

dynamical properties in the behavior of all systems. 

We then lift ed up this image, transfi gured it into an 

association with the urban ecological footprint, itself 

another metaphor, and set the result down as defi ning 

of a way of thinking about the kinds of model that 

might be needed for exploring sustainable development 

of the built environment (in Challenge # 11). One 
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should just as eff ortlessly be able to switch amongst 

diff erent images and metaphors for problem-solving.

Issues of scale, brought together in Challenge # 3 as a 

core scientifi c challenge in their own right, returned 

to prominence as matters inextricable from designing 

Observatories and developing models, when (again 

in Challenge # 11) the long view was taken over 

pragmatic, policy-oriented tasks of re-engineering the 

built environment.

And in Box 7 under that Challenge # 11, and in the 

spirit of classical systems thinking (we may note 

in passing), some generic (and complementary) 

limitations in models (M) are extracted from three 

superfi cially quite diff erent specifi c case studies of the N 

cycle in whole watersheds.

Vertical Integration: Outreach to Non-Modeling 

Communities

What works well about a jargon in this horizontal 

sense can become an impediment, as so obvious in 

the strident reactions of Pilkey and Pilkey-Jarvis 

(2007), when we are confronted with the need to 

achieve “vertical integration”: from the computational 

science of the environmental cyber-infrastructure, up 

through our own modeling community, to the primary 

fi eld scientists, and on ultimately to scientifi cally lay 

members of the public.37 A high degree of transparency 

about the essence of the model is crucial to the 

equally vital building of trust amongst these other 

communities (Pascual, 2009).

Th is capacity for seeing through the inescapable 

complexity, especially of very high order models, is 

refl ected in the advocacy of scientifi c visualization 

devoted expressly to the structure of the model, so that 

the offi  ce-bound Statistician may work with the ship-

board Marine Ecologist, in responding to Challenge 

# 7. It is just as vital when the stakeholder is not the 

model builder, but the policy person seeking support 

and guidance in the making of decisions (Challenge # 

10), or the ordinary member of the public witnessing 

the treatment of personal preferences along the bottom 

line of attempting to achieve {social legitimacy} in 

those policy decisions (Challenge # 11).

37  As already noted (Chapter 4.1) in respect of the report 
on the Seminar “A New Look at the Interaction of Scientifi c 
Models with PolicyMaking” (www.martininstitute.ox.ac.uk).

We all belong to a community, perhaps several of 

them. Each community has its prejudices. And models 

are not always viewed in a favorable light, as now 

abundantly clear. We observed this in introducing 

those policy-directed Challenges # 10 and # 11. Models, 

it has been said, allow the craft  skills and expertise of 

the model-builder to be legitimated — made objective, 

as opposed to subjective — such that that expertise may 

be presented in an impersonal manner (Rayner, 2008). 

Since some would be much less detached in expressing 

their resentment of models and modelers, it is clear that 

our community suff ers from a problem of “image”. We 

should be obliged to attempt to overcome it.

Lingua Franca: Acquiring the Skill

If the lingua franca of modeling holds out the promise 

of such advantages, when is the skill of “speaking it” 

generally acquired, and is that the best of times for 

acquiring such a skill?

No-one takes a Bachelor’s degree majoring in 

computational environmental modeling. For this is 

an advanced subject, arguably a secondary science (as 

we have said), certainly a second scientifi c language, 

learned later in one’s professional life (if at all), 

customarily in the years of a PhD or shortly thereaft er. 

Becoming inter-disciplinary in one’s thinking needs 

to happen immediately aft er the fi rst, primary 

specialization of tertiary study and training. Th e 

timing may be critical and the window of opportunity 

but briefl y ajar. A balance must be struck between 

pre-empting onset of the mono-disciplinary tunnel 

vision at the earliest possible juncture, while not 

breaking the nascent self-confi dence of those starting 

to engage in the process of being inter-disciplinary. 

Each of us needs to be reassured of having acquired 

some of the intellectual clothing of being an expert 

— in something, some single discipline, or some 

specialization — before disrobing to stand ignorant 

and humble before the expertise and disciplines of 

others. For as long as we have the pressures of gaining 

tenure in an academic system (NRC, 2004), the window 

of opportunity for acquiring the life-long skill of 

communicating across disciplines, using the language 

of modeling (in our case), will not remain open for long 

around the pre- and post-doctoral years.

To summarize, developing responses to many of the 

grand challenges of this Paper implies investments 

in the structure of our community (Challenge # 
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12), including in the education and training of the 

next generation of environmental modelers. In line 

with the ubiquitous calls for realizing greater inter-

disciplinarity in the conduct of Environmental 

Science (and elsewhere, further afi eld; NRC, 2004), 

we argue that model-building has a special role to 

play. Yet despite this as the focus of the project’s (May, 

2006) Tucson Workshop, even the mechanism of 

communicating amongst ourselves — as modelers from 

just the constituent disciplines of the Environmental 

Observatories — is not in perfect working order.

5.2 Recommendations

Within Community Orchestration: Substance Not Form

All that said, our fi rst recommendation has to be this:

Recommendation # 1:

Having brought a signifi cant proportion 

of the community together, through a 

Workshop, and now — by virtue of the 

literature reviewed herein — this White 

Paper, it would be a missed opportunity 

not to provide the wherewithal for the 

continuing active maintenance, development, 

and scientifi c prosperity of the modeling 

community under the EO initiatives.

But what might be the substance of such active 

management? For we can readily reach for various 

forms of organized activity: network, workshop, 

center, summer school, task force, specialist 

technical group, and so on; with each assuming 

either a real or virtual form, as enabled through the 

cyber-infrastructure. No matter their intensity and 

extent, however, the formalities of organization may 

not be the key to successful implementation of this 

recommendation.

We have the lingua franca of modeling; how should we 

now best put it to work within these various forms of 

activity?

The archetypal procedure of Applied Systems 

Analysis is supposed to function ideally as follows. 

A problem specific to “foreign” discipline F lacks a 

solution. That problem, nevertheless, has certain 

prominent, generic features, crudely recognizable to 

the applied systems analyst working predominantly 

on problems specific to his/her “native” discipline 

N. This analyst has a solution to the generic 

problem, albeit a solution attuned to the specific 

needs of discipline N. Working with a partner 

in discipline F, initially to re-shape F’s unsolved 

problem, to fit it better within the mold of N’s 

(solved) problem, the generic problem-solution 

couple can be transcribed from N to F, thus to 

liberate a solution to the previously unsolved 

problem specific to F. But this is not an end to the 

process. Given an ever improving understanding 

of the problem set — if not solution set — of the 
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foreign discipline (F), our archetypal analyst has 

growing access to translations of a set of problems 

rarely, if ever, uncovered in his/her native discipline N.

Th ings could begin just as well from the opposite 

perspective, of course: of a frustrated analyst in 

discipline F looking outwards from his/her own 

discipline, scanning other disciplines for a matching of 

their problem-solution couples with his/her unsolved 

problem. But s/he would have to be provoked into 

“looking outwards” in the fi rst place. And what 

training would incline anyone so to do?

Levin (2006) gives tangible and succinct form to such 

clinical abstraction of systems thinking, in his case on 

the matter of extracting generic insights into the nature 

of adaptive dynamics in systems (and in our case, 

under our Challenge # 5):

Moving from the ecological to the social or 

economic situation simply completes the 

loop — these are ideas that had their origins 

in economics, were adapted and modifi ed for 

biology, and now fi nd new application in their 

original setting.

Success in implementing our fi rst recommendation, 

then, is unlikely to be entirely a matter of form or 

format, or of the intensity, or superfi cially visible 

structure, of the organization behind any given activity. 

Alas, it is more likely to be dependent upon the correct 

mix of people, their personalities, and their outlooks 

on what constitutes a scientifi c problem worthy of their 

sustained attention.

Time is manifestly a vital factor in inter-disciplinary 

work, and in various ways:

(i) time to be given up for a brief period, 

such as at a workshop, to step out of 

the specifi cs of one’s personal research 

interests — groundwater contaminant 

transport; settling and compaction of 

biological fl ocs in wastewater treatment 

— to recognize the shared challenge, in 

modeling and forecasting the generic 

features of transient pollution events;38

38  Experience has shown, rather consistently, that such 
does not tend to happen.

(ii) time for the younger researcher on a 

fi xed-term contract to ensure the fi rst 

fl ush of naïve curiosity, in collaborating 

widely across disciplines, is rewarded 

suffi  ciently quickly, before the next career 

position has to be secured; and

(iii) time in the sense of age being on the side 

of the applied systems analyst, who must 

accumulate the experience of suffi  cient 

case studies in solving specifi c problems 

to be able to discern with increasing 

clarity those recurring problem-solution 

couples of a more generic character.39

In 1986 Holling expressed his synthesis of the “Myths 

of Nature” and their mapping onto the cyclical, longer-

term dynamics of ecological systems (Holling, 1986). 

Over the subsequent decade, anthropologist Th ompson 

was able to map the social transactions amongst 

the fundamental typologies of Cultural Th eory 

onto Holling’s cyclical behavior in ecosystems, with 

powerful implications for Applied Systems Analysis in 

general (Th ompson et al, 1990; Price and Th ompson, 

1997; and Th ompson, 1997). Th at is one important 

exemplar of the very best of inter-disciplinary research; 

and surely an indicator of the time such can take.

Personality too will be important:

(i) in the sense of suppressing any tendency 

to scoff  in disbelief at the utter simplicity 

of the problem specifi cations — gross 

distortions of the real-world problem —  

essential to initiating a novel procedure of 

solution;

(ii) in the dogged persistence of the solution-

provider, to work with the problem-owner 

in removing each gross assumption, one 

by one, as the solution procedure matures, 

instead of forsaking the ardor of the path 

back to the messy problems of the real 

world for the relative ease and appeal of 

the next pristine, elegant, but abstract, 

alternative, wherever it may present itself 

(elsewhere); and

39  And that aging analyst would do well to retain a 
degree of naïvety, tolerant of the seemingly impossible and 
outlandish (at fi rst sight).
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(iii) in simply holding on to humility — an 

absence of pontifi cating on how others 

should mobilize their uniquely acquired 

expertise.

And there will probably be a need for a dirigiste style 

of orchestration, drawn along by the vision of a well 

targeted, tangible, and substantial end-point:

(i) the book on Panarchy by Gunderson 

and Holling (2002) was the product of a 

deliberately orchestrated network activity 

(the Resilience Alliance) sustained over 

several years;

(ii) that on Evolutionary Economics by Dosi 

et al (1990) resulted from a sequence 

of meetings and workshops dedicated 

expressly to achieving the sole outcome of 

the monograph; and

(iii) production of the monograph on 

Environmental Foresight and Models: A 

Manifesto (Beck, 2002) was fashioned 

aft er the process employed by Dosi and 

colleagues (and all told, took a decade to 

complete).

We recommend no specifi c form of community 

orchestration, therefore, merely sustaining an active 

awareness of the foregoing considerations of group 

sociology, as the basic ingredients of eventual success, 

when it comes to developing any given activity.

Having off ered these general principles of community 

orchestration aimed expressly at achieving inter-

disciplinary work, our next recommendation is likewise 

not prescriptive. Rather, it is indicative of the kinds of 

actions that could be taken following publication and 

dissemination of this, our full White Paper.

Cross-Community Communication: Attaining the 

Bigger Picture

Whereas Recommendation # 1 looked primarily 

inwards, to our own professional community, this 

second recommendation is oriented towards what we 

have labeled as “outreach”, thus:

Recommendation # 2:

Given that modeling cannot proceed in a 

vacuum, detached from reality, case studies 

and case histories should be prepared and 

packaged in forms designed to serve the ever-

present need of the modeling community to 

build and maintain fruitful relationships 

with a variety of other communities — of 

philosophers, scientists, engineers, scholars, 

policy-makers, and the public — in 

developing the beginnings of responses to the 

Grand Challenges.

It is important to achieve a strategic sense of 

perspective, a sense of history. Th e long view is 

as important as looking outwards from our own 

professional community.

Our over-arching Challenge # 0, for example, calls for 

a perhaps unusual collaboration to be initiated between 

modelers and philosophers of science. Constructive 

engagement of the two, however, is unlikely to be 

established in the absence of the empirical evidence of 

case histories in how models and the sciences of, say, 

Ecology or Hydrology have evolved in tandem over the 

past four decades. Only now, with the benefi t of such a 

signifi cant span of history, might we be able to discern 

innovations of a strategically important philosophical 

nature.

Challenge # 7 has its sights set on a cyber-

infrastructure capable of supporting the lateral 

thinking necessary for reconciling large, very high 

order models (VHOMs) with extensive sets of 

data. Making progress on that front will require 

computational scientists and soft ware engineers40 to 

be led through our more substantial case histories in 

the systematic identifi cation of environmental models, 

to the points where they can diagnose why current 

soft ware frameworks frustrate realization of the 

needed “tinkering” paradigm. Enabled now to take the 

long view over four to fi ve decades of environmental 

modeling, signifi cant shift s in schools of thought, 

which may have seemed imperceptible at the time, 

can be more sharply illuminated, even to dramatize 

40  Typically, those who generate the toolboxes of the 
MATLAB-SIMULINK® platform or who, like Th e DHI 
Group, are promoting the production of soft ware that is 
“OpenMI™ Compliant”; atypically, perhaps, also those who 
have worked on the graphics design of the visualizations in 
Boxes 2 and 3 of Challenge # 7.
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why access to such a tinkering paradigm should be so 

important (Schertzer and Lam, 2002; Dennis, 2002).

Th e Seine-Paris case study (Billen et al, 2007a) is of 

strategic importance for a variety of reasons, not 

merely for its long view (which spans a thousand years 

or so), nor its relevance to opening out responses to the 

essentially scientifi c (Challenge # 1) and the urgently 

pragmatic alike (Challenge # 11). Indeed, we should 

be enquiring into what, therefore, in the nature of 

the funding mechanisms and community structures 

underpinning this Seine-Paris program, has made it 

something of an exemplary, inter-disciplinary case 

study — at least according to the public accounts of its 

outcomes.

Models for Design/operation of the EOs

To this general rule of mere indicative responses to 

our various Challenges, there is one notable exception, 

expressed as follows:

Recommendation # 3:

Given the maturity of Observing System 

Simulation Experiments (OSSEs), and their 

obvious potential role in the design of all the 

Environmental Observatories, investment 

in the work needed to respond to this facet 

of Challenge # 6 is recommended. In seeking 

progress on a variety of fronts, however, such 

investment should be directed beyond the 

pragmatic needs of EO design, for example: to 

furthering the social and professional aspects 

of bridging any divides between the fi eld-

science and model-building communities; 

and to propelling OSSEs as much as possible 

beyond the current state of their art.

Th e WATERS Network proposes to do precisely that 
(WATERS, 2008). Its second phase of planning will 

focus on designing its EO to answer scientifi c questions 

informed by the somewhat heterogeneous means of 

fi xed and mobile observing platforms. If formulated as 

an OSSE, embedding therein some of the principles of 

data assimilation (from Challenge # 9 and the LOOPS/

Poseidon initiative recounted in Box 5), new research 

ground should be broken in the process.

Given the initial momentum of this White Paper, 

in bringing together disciplines and schools of 

thought that might otherwise have remained apart, 

quite other lines of research are discernible. Mobile 

observing platforms, aft er all, are (intelligent) agents 

moving about the fi eld. Th ose carrying forward the 

new frontiers in Individual Based Modeling (IBMs) 

in Ecology (Grimm et al, 2005) might therefore be 

encouraged to bring unexpected and novel challenges 

to this rather mature domain of OSSEs, data 

assimilation, and adaptive sampling, with its basis in 

models alternatively as (traditional) sets of diff erential 

equations.

What, however, does Society want of the EOs? Just 

as cultivation of the Grand Challenges for the 21st 

Century by the US National Academy of Engineering 

was enacted (2006/7) through public debate and the 

priorities set (2007/8) by a public voting system — and 

just as Gibbons (1999) has argued for a new contract 

between Science and Society — some of the goals 

of the EOs might similarly be so determined. How 

should models (M), scientifi c visualization, and all the 

facilities of the environmental cyber-infrastructure be 

turned then to such a purpose?

Training the Next Generation

Our fourth and fi nal recommendation follows directly 

from Challenge # 12 (community structure):

Recommendation # 4:

Having argued a case in favor of the special 

role of models, as the lingua franca of 

inter-disciplinary research, we recommend 

investigating the merits of complementary 

alternatives to vehicles such as NSF’s 

Integrated Graduate Education Research 

and Training (IGERT) schemes for the 

purpose of training the next generation of 

environmental modelers.

Th e Education Committee of the WATERS Network 

has recently recommended a Workshop for all of the 

Environmental Observatories on the topic of Education 

and Outreach (WATERS Network, 2007b), just as 

our own project has been supported in hosting the 

Tucson Workshop of May, 2006. Th ere is every reason, 

therefore, for us not to recommend duplication of such 

eff ort.
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Instead, noting that in 2007 the International Institute 

for Applied Systems Analysis (IIASA) celebrated its 

35th Anniversary and, more importantly, the 30th 

anniversary of its Young Scientists Summer Program 

(YSSP; www.iiasa.ac.at/YSSP), we suggest there may be 

much to be gained from reviewing the merits of that 

kind of Program in meeting our present needs.

A candidate description of what constitutes “inter-

disciplinarity” (for the environmental systems analyst) 

has been embedded in the foregoing discussion of 

Challenge # 12 and Recommendation # 1 regarding 

the structure of our community (see also Chapter 

5.1). Given this as a point of departure to be disputed 

and improved upon, alongside the NRC’s more wide-

ranging report (NRC, 2004) what — we should ask 

— has the YSSP correctly encapsulated, and what has 

escaped its purview, in sowing the seeds of successful 

inter-disciplinary thinking in young minds? How 

might we benefi t, if at all, from the longevity and 

consistency of the YSSP, in identifying whether and 

how its alumni have actually become leaders in the 

science and practice of inter-disciplinary thinking?
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NSF’s Environmental Observatory 

initiatives promise access to 

unprecedented streams of 

observations on the behavior of 

environmental systems in situ. Excellence in developing 

models of that behavior is not achievable without both 

such volume and quality in those expected data streams.

Talk of things being “transformative” and 

“unprecedented”, however, can become a commonplace 

when large sums of money are in prospect for 

supporting ambitious programs of research. We are 

using these words advisedly, therefore.

Th ere is a subtle, but signifi cant point of dislocation 

— a threshold — beyond which the scope for progress 

and achievement in model-building becomes 

qualitatively diff erent from that to which we have 

become accustomed. Hitherto, it has been typical 

for any divergence — between a model (of growing 

complexity, in general) and the relatively sparse and 

inadequate data (with which conditions, incidentally, 

we shall always have to deal) — to be dismissed as a 

consequence of those inadequate data. High volumes 

of high quality (HVHQ) data should deny such 

all-too-easy dismissal in future. Hard thought will 

have to be invested in diagnosing why the model 

is failing, not as a whole, but in which particular 

parts. And even harder thought will be called for in 

extracting the failed parts from the complex whole; 

coming up with novel hypotheses; expressing them in 

mathematical form; and re-confi guring the structure 

of the model so as to accommodate the new and 

revised constituent hypotheses. Th is is especially true 

today in understanding the behavior of chemical and 

biological species in our environment, beyond the more 

customary measures of pH, conductivity, and dissolved 

oxygen concentration, for example.

For some members of this Committee, with access to 

monitoring platforms capable of generating HVHQ 

data, the beginnings of the transformation to such 

a qualitatively diff erent domain of opportunities for 

research in environmental modeling have already been

 experienced.41 In so many of our Challenges this same 

kind of question recurs: what exactly is it that causes 

model and reality not to match; and how should we 

observe, diagnose, probe, and explore such a mismatch 

in order to understand and resolve it as swift ly as 

possible?

Whether we also stand on the threshold of qualitative 

change in other ways is less clear. For there has 

always been monotonic progression in our models 

of environmental systems, towards an ever greater 

scope (such as an Earth Systems perspective) and 

the inclusion of ever more detail (down to the 

biochemical metabolism of the individual cell and 

below). Th is progression seems now, however, on the 

verge of being cross-fertilized in rather novel ways 

by simulation of the behavior and functioning of the 

individual organism (in the biomedical sciences) and 

simulation of that individual as it negotiates a natural 

environment populated by like and other individuals 

(in the social sciences).

Th is same irrepressible advance in environmental 

models — and their increasing embrace of the personal 

and the private in human aff airs — will eventually 

cause our professional community to step over another  

threshold, there to confront some uncommon ethical 

challenges.

41  And Kirchner et al (2004) talk enthusiastically and 
convincingly of “catching this new wave” in the Hydrologic 
Sciences.

Chapter 6: Conclusions
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